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s u m m a r y

The developing brain of the very low birth weight (VLBW) infant is highly sensitive to effects of the
nutritional milieu during the neonatal hospitalization and after discharge. Strategies to optimize nutri-
tional care play an important role in reducing long-term neurodevelopmental morbidities in this pop-
ulation. Currently available interventions to ensure that the unique nutrient requirements of the VLBW
infant are met include various dietary fortification strategies and parenteral nutrition. In this article, we
review evidence regarding nutritional strategies and their beneficial effects on neurodevelopment in
VLBW infants. We also highlight gaps in current knowledge and areas of current investigation that hold
promise for improving nutritional care and long-term outcomes.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Although growth of hospitalized preterm infants has improved
substantially in the past two decades, poor weight gain remains the
most frequent morbidity seen in very low birth weight (VLBW,
<1500 g) infants. For example, epidemiologic data from across the
USA demonstrate that in 2013, over half of VLBW infants left the
neonatal intensive care unit (NICU) with a weight below the 10th

percentile for gestational age [1]. Another recent study from 132
California NICUs reported that VLBW infants lose on average almost
a full standard deviation in weight-for-age from birth to discharge
[2], demonstrating extrauterine growth that lags behind the
growth that would have occurred in utero. Taken together, these
findings suggest that despite the current emphasis on intense early
nutritional support, undernutrition remains an important problem
for hospitalized VLBW infants.

Another frequently occurring morbidity seen in VLBW infants is
neurodevelopmental impairment. VLBW infants demonstrate dif-
ficulties across awide range of domains, including cognitive, motor,
language, and behavioral functioning [3,4]. These difficulties
burden children and their families, and incur large societal costs
related to early intervention and special education services [5].
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Notably, links between neurodevelopment impairment and early
nutrition are well established [6], and are explained by the sensi-
tivity of the developing brain to nutrition [7].

For the VLBW infant, developmental processes that normally
take place in utero instead occur after birth, in the NICU environ-
ment. Magnetic resonance imaging (MRI) studies provide a win-
dow into the rapid growth and development of the preterm brain
that occur during this time. From 29 weeks of postmenstrual age
(PMA) to term equivalent, the preterm brain increases in volume
from 150 to 400 mL, reflecting a rapid expansion of both the white
and gray matter [8]. Structurally, the brain surface transforms from
being largely smooth at 25 weeks of gestation to demonstrating a
nearly-mature pattern of sulci and gyri by term equivalent
age (Fig. 1) [9,10]. On a microstructural and cellular level, the pre-
dominant developmental processes immediately after very
preterm birth include dendritic and axonal growth and differenti-
ation of the myelin-producing oligodendrocytes. Close to term
equivalent age and into the first year of life, synaptic pruning and
myelination become prominent [11].

Certain developmental processes may be more or less vulner-
able to undernutrition, thus the timing of the limitation in
nutritional support is an important determinant of its long-term
impact. Also, although the potential for recovery after a period of
undernutrition exists, certain aspects of brain development may be
permanently altered by a limited nutritional exposure during a
critical period. Clinicians who care for very preterm infants must
therefore understand the key role that nutritional care plays in
optimizing the neurodevelopmental outcomes of their patients.
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Fig. 1. Growth and development of the preterm brain. These images were obtained from a single infant at 28, 31, 34, and 38 weeks of postmenstrual age, and demonstrate the
marked increase in brain size and complexity of cortical folding over this time period. From Smyser et al. [10].
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During the neonatal hospitalization, although the optimal rate
of growth is unknown, the goal is to match the rate of growth and
body composition of the in-utero fetus [12]. Available interventions
include enteral and parenteral feeding strategies, as well as
micronutrient and fatty acid supplementation. The first year after
hospital discharge provides an opportunity to address nutrient and
growth deficits that may have accrued during the hospitalization,
with the potential to ameliorate adverse long-term effects. In-
terventions include specialized formulas and fortification of human
milk. In this article, we review the evidence base behind nutritional
strategies during and after the neonatal hospitalization, with a
focus on interventions that show promise to improve neuro-
developmental outcomes (Table 1). We point out both key practice
points and areas requiring additional research.

2. Nutritional strategies during the NICU hospitalization

Clinicians in the NICU play a critical role in ensuring that VLBW
infants receive nutritional care that is targeted to their unique
Table 1
Evidence for effects of nutritional strategies on growth and neurodevelopmental outcom

Weight gain and/or lin

During the NICU hospitalization
Fortified preterm vs term formula þ
Modifications to preterm formula
Higher protein þ
Long chain polyunsaturated fatty acids 4

Bile salt-stimulated lipase 4

Human milk vs formula �
Human milk fortification vs no fortification þ
Adjuncts to human milk fortifier
Added protein þ
Human milk cream þ

Maternal DHA supplementation during lactation 4

Parenteral nutrition (early vs late) þ
Iron supplementation 4

After NICU discharge
Transitional (post-discharge) vs term formula þ
In-hospital preterm vs term formula þ
Human milk fortification þ

þ, positive association; �, negative association; 4, no association; ?, little or no eviden
needs. In reviewing the evidence base behind nutritional practices
in neonatal intensive care, it is notable that many nutritional
intervention studies have focused on short-term growth outcomes,
whereas relatively few have determined longer-term effects of
nutritional interventions on neurodevelopment. To fill this gap,
longitudinal observational studies provide information that com-
plements data from randomized trials. Clinicians should recognize
that knowledge alone is not sufficient to ensure the effectiveness of
nutritional interventions; implementation requires processes of
care that support consistent care and attention to nutritional pri-
orities [13]. In this section, we review enteral and parenteral
nutrition strategies with a specific focus on the evidence base that
established their effects on somatic growth and neurodevelopment
(Table 1).

2.1. Fortified preterm formula

Seminal research by Lucas and colleagues conducted in the
1980s established that providing a formula enriched with
es in very low birth weight infants.

ear growth Head growth Neurodevelopmental outcomes

þ þ

4 ?
4 þ/4
4 ?
� þ
þ þ

þ ?
þ ?
4 þ
4 4

4 4

4 4

þ 4

þ þ/?

ce; NICU, neonatal intensive care unit; DHA, docosahexaenoic acid.
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macronutrients, minerals, and micronutrients for as little as three
weeks after birth improved early weight gain (15.8 vs 13.3 g/kg/
day), as compared with feeding a standard term formula [14]. In
that study, formula was provided either as the sole diet or as a
supplement to human milk. Weight gain benefits of the preterm
formula were more pronounced in infants who received formula as
their sole diet (no human milk). Additionally, in infants who
received formula as their sole diet, not only was weight gain
improved, but head growth was also substantially faster in the
preterm formula group (1.53 vs 1.21 mm/day). This finding is
notable given the strong correlation (r¼ 0.68) between head
circumference and brain size [15], and the association of greater
head circumferencewith better later neurodevelopmental outcome
[16,17].

Follow-up of study participants at 18 months of age confirmed
beneficial effects of the preterm formula on neurodevelopment
[14]. Specifically, motor scores were about one-third of a standard
deviation higher in the infants who received preterm formula as
compared with standard formula when all infants (formula as sole
diet plus formula as supplement to human milk) were combined. A
benefit to social maturity was also seen. Whereas cognitive func-
tion was also better in the preterm formula-fed infants, the differ-
ence was smaller in magnitude than the motor and social maturity
benefits, and not statistically significant. Mirroring results for early
growth outcomes, benefits were generally more pronounced in the
infants who received formula as their sole diet, without any human
milk. For example, motor function was a full standard deviation
better in the infants fed preterm formula only, whereas no benefit
was detected in infants fed preterm formula as a supplement to
their mother's milk.

Because neurodevelopmental outcomes in infancy are only
modestly predictive of later abilities [18], longer-term follow-up is
required to demonstrate sustained benefits of a nutritional inter-
vention. Lucas' study comparing preterm vs term formula is unique
in that testing of neurodevelopment was conducted not just in
infancy, but also again at school age. This follow-up revealed that at
7e8 years of age, the odds of having a low IQ (<85) were about
three-fold higher in children randomly assigned to the standard
term formula [19] Additionally, in children who received the pre-
term formula, verbal IQwas about one-third of a standard deviation
higher, although the difference was not statistically significant. A
sex-specific benefit was noted, with an almost full standard devi-
ation advantage for boys who received preterm formula, seen only
in the group who received formula as the sole diet.

The strong evidence provided by those early studies led to
widespread adoption of preterm formula during the 1990s. How-
ever, as noted above, slow postnatal weight gain remains frequent,
despite the routine use of preterm formula. Further, observational
studies of contemporary cohorts fed fortified diets reveal associa-
tions of faster somatic growth with greater brain maturation [20]
and better neurodevelopmental outcomes [16,21,22]. These find-
ings suggest additional room for improvement in nutritional care to
optimize support for brain growth and development.

2.2. Further opportunities to improve preterm infant formula

While the question of whether or not to use preterm formula
has already been answered, more work remains to identify the
composition of formula that optimally supports the brain devel-
opment of growing preterm infants. Some clinical trials have
evaluated incremental improvements in the macronutrient
composition of formula, for example higher versus lower protein
content [23], but those studies have focused primarily on short-
term benefits such as weight gain and have not assessed longer-
term benefits to neurodevelopment. Other research has
investigated the benefits of adding long chain polyunsaturated fatty
acids (LC-PUFAs) to preterm infant formula. Whereas a few studies
have noted neurophysiologic benefits, assessed with visual evoked
potentials, and improved performance on a measure of infant
attention (Fagan test), meta-analysis of studies that used a standard
neurodevelopmental test (Bayley Scales) at 18 months revealed no
benefit [24]. Nonetheless, current commercially available preterm
formulas typically contain added LC-PUFAs such as docosahexae-
noic acid (DHA) and arachidonic acid (ARA), and this practice ap-
pears to be safe. Current research in this area focuses on optimizing
fatty acid balance [25] and other aspects of fatty acid composition,
as discussed elsewhere in this issue.

In addition to nutritional improvements to infant formula,
recent research has focused on the addition to formula of non-
nutrient bioactive factors that are naturally present in human
milk and which may improve digestion and absorption, thereby
indirectly improving the infant's nutritional status. For example,
bile salt-stimulated lipase (BSSL) is a lipolytic enzyme secreted by
the mammary gland into human milk. BSSL assists with digestion
and absorption of fat, which is of particular importance given the
relative pancreatic immaturity of the preterm infant. Although an
initial clinical study was promising [26], a recently published Phase
III trial [27] did not find evidence of improved growth velocity,
except in the subgroup of infants born small for gestational age.
Neurodevelopmental testing was conducted at 12 months of age as
a “safety” measure and the authors reported that there was no
difference between groups, but did not include those data in the
published paper.

Taken together, the available evidence supports the use of pre-
term formula over standard term formula for hospitalized preterm
infants. Beneficial effects include more rapid somatic growth dur-
ing the NICU hospitalization, as well as improved neuro-
developmental outcomes, with effects that persist at least to school
age. Other widespread practices, such as the supplementation of
formula with high doses of protein, or the addition of LC-PUFAs, are
not based on any clear-cut evidence for neurodevelopmental ben-
efits. Future research is expected to focus not just on nutritional
modifications to preterm infant formula, but also on non-
nutritional factors that may aid in digestion and absorption.

2.3. Human milk use as a strategy to improve neurodevelopmental
outcomes

The previous section focused on evidence regarding the use of
preterm formula rather than standard term formula. However,
recent practice has moved toward an increased use of human milk
rather than formula to feed VLBW infants [28], based largely on the
protective effects of human milk against necrotizing enterocolitis
[29]. This increased use of human milk is relevant to neuro-
developmental outcomes for two main reasons. First, human milk-
fed preterm infants gain less weight during the NICU hospitaliza-
tion than formula-fed infants [30], suggesting relative undernu-
trition that could adversely affect neurodevelopment. Second,
some observational evidence suggests that humanmilk rather than
formula-feeding is associated with better neurodevelopmental
outcomes in preterm infant populations [31], which contradicts
what one would expect given concerns for undernutrition in hu-
man milk-fed infants. In this section, we review the evidence
behind the neurodevelopmental benefits of human milk feeding as
a nutritional strategy.

Several studies have evaluated the extent to which feeding
human milk (as compared with formula) to VLBW infants in the
NICU is associated with better neurodevelopmental outcomes [32].
Whereas some studies have demonstrated beneficial effects of
human milk on outcomes assessed in infancy and beyond [33e35],
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others have shown minimal or no benefit [36,37]. Socio-economic
factors differ between mothers who do and do not provide milk
for their VLBW infants, and also track closely with neuro-
developmental outcomes. Thus, it is likely that at least some of the
observed benefit is explained by confounding due to these social
factors.

By design, randomized trials can overcome the problem of
confounding inherent in observational studies of human milk and
neurodevelopment. Although it is not ethical to randomizemothers
to provide their own milk to their infants or not, it is possible to
randomly assign infants to receive either donormilk or formula as a
supplement when their own mother's milk is not available. In such
studies, social factors are evenly distributed between groups, and
results can shed some light on the direct neurodevelopmental
benefits of human milk itself. A limitation of this approach is that
donor milk does not retain all the potentially beneficial nutrient
and non-nutrient factors that are present in mother's own milk,
due to pasteurization and freezing processes, as well as differences
in lactation stage between milk donors and mothers of preterm
infants [38].

Lucas and colleagues led an early trial in which preterm infants
were randomized to receive donor milk or standard term formula,
either as their sole diet or as a supplement to mother's own milk.
Weight gain was slower in the infants fed donor milk, suggesting
relative undernutrition, but developmental outcomes were equiv-
alent at age 18 months [39]. This finding was unexpected given the
strong links between early nutritional status and neuro-
developmental outcome. It is possible that beneficial factors in
donor milk itself offset the harmful effects of relative undernutri-
tion. An important limitation of that early study is the fact that it
was carried out prior to the routine use of human milk fortifiers
(discussed in the next section). The question of whether fortified
donor milk or preterm formula is superior in terms of early growth
and/or neurodevelopment is the subject of two trials currently
underway [40,41].

Overall, recommendations emphasizing a preference for the use
of human milk over preterm formula [28] are based predominantly
on health benefits. Observational studies suggest that human milk
feeding may also benefit neurodevelopmental outcomes, but firm
conclusions are difficult due to concerns about undernutrition and
socio-economic differences that explain both feeding choices and
outcomes. Ongoing randomized trials are expected to determine
the extent of neurodevelopmental benefits contributed by fortified
donor milk, and guide clinical practice regarding nutritional stra-
tegies for human milk use that optimally supports neuro-
development in VLBW infants [40,41].

2.4. Human milk fortification

Evolutionary factors have optimized the composition of human
milk to meet the nutritional needs of full-term infants [42]. How-
ever, VLBW infants have different nutritional requirements than
full-term infants because VLBW infants must match fetal accretion
rates, compensate for deficits that accrue prenatally and post-
natally, and meet excess needs due to illness. Requirements for
protein, energy, fatty acids such as DHA, minerals including calcium
and phosphorus, and micronutrients (e.g. iron, zinc) are all higher
for the VLBW infant than for the newborn healthy full-term infant
[43], and all of these nutrients play a role in supporting brain
growth and development. Thus, the extent to which human milk-
fed VLBW infants are able to meet these requirements is likely to
influence their neurodevelopmental outcomes.

A widely used strategy to address the special nutritional needs
of the VLBW infant is to add a multi-component human milk
fortifier to mother's own and donor milk before feeding it to VLBW
infants. Fortifying human milk increases weight gain, linear
growth, and head growth during the neonatal hospitalization, as
compared with feeding unfortified milk [44], suggesting that
nutritional requirements are being met more effectively. However,
very little is known about the neurodevelopmental benefits of
human milk fortification, as only one study [45] has examined
these outcomes. That study found a 2e3 point advantage in Bayley
Scales at 18 months for infants randomly assigned to multi-
component human milk fortifier, but the differences were not
statistically significant, and confidence intervals could not exclude
clinically important differences. Additionally, a 6 point (approxi-
mately one-third standard deviation) advantage was noted in
males who received the fortifier, suggesting a possible sex-specific
effect. No study has examined outcomes later in childhood in
relation to human milk fortification.

Moving beyond the question of whether or not to fortify human
milk for VLBW infants, subsequent investigations have focused on
how strategies for human milk fortification may be further opti-
mized. For example, although standard fortifiers contain protein,
providing even more protein targeted to biochemical markers of
nitrogen utilization promotes greater weight gain and head growth
[46]. Products for modular protein fortification are commercially
available and facilitate easy adjustment of protein intake, for
example in response to slow weight gain in human milk-fed in-
fants. Regarding fat, a human milk-based cream product has been
shown to improve weight gain, linear growth, and head growth
[47], although this product is not yet in widespread clinical use.
Initiating fortification sooner after birth and reaching higher target
levels of multiple macronutrients than usual care also appears to
increase weight gain. Although all of these studies demonstrate
strategies for human milk fortification that are effective in
improving early weight gain, one frequent limitation is lack of
neurodevelopmental data, without which the magnitude of benefit
to these longer-term outcomes cannot be estimated.

Besides fortifying human milk directly, another strategy to
optimize the composition of humanmilk for humanmilk-fed VLBW
infants is to provide nutritional supplementation to lactating
mothers. This approach has been studied in relation to DHA. A
large, multi-center trial in Australia randomized very preterm in-
fants to high (~1% of total fatty acids) versus standard DHA intake,
which was achieved via maternal supplementation with tuna oil
capsules or placebo. At 18 months of corrected age, neuro-
developmental outcomes were similar between study groups, but
subgroup analyses revealed a small benefit of maternal DHA sup-
plementation to girls and to infants <1250 g birth weight
(approximately one-third standard deviation advantage for both
subgroups) [48]. Follow-up of >90% of study participants at 7 years
of age revealed no between-group differences in IQ or in perfor-
mance on measures of attention, executive function, behavior,
visualespatial perceptual skills, educational progress, and quality
of life [49].

In addition to optimizing the composition of human milk
fortifier and the maternal diet, to fully support preterm brain
development, clinicians may also need to address the challenges
posed by thewide variation in themacronutrient content of human
milk. For example, one study [50] of 736 maternal milk samples
reported a five-fold range in protein (0.61e2.96 g/dL) and 10-fold
range in fat (0.66e6.35 g/dL). Donor milk is similarly variable in
its macronutrient content, and has even lower average protein
levels than mother's own milk [51]. Because human milk fortifiers
are designed to be mixed with “typical” human milk (e.g. milk
containing protein 1.2 g/dL and fat 3.5 g/dL), whenever the actual
macronutrient content is less than “typical,” nutrient deficits
accumulate [52]. Current research is investigating the use of
bedside milk analyzers to facilitate individualized targeting of
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human milk fortification based on the actual macronutrient con-
tent of the milk [53]. If this approach is successful in improving the
early nutritional status of humanmilk-fed VLBW infants, it may also
benefit neurodevelopment.

In sum, to meet the nutritional requirements of human milk-fed
VLBW infants, fortifiers must be added to milk prior to feeding.
Fortification of humanmilk clearly benefits early growth outcomes,
but evidence regarding direct effects on neurodevelopment is
limited. Maternal dietary supplementation during lactation is
another available strategy to optimize the nutritional composition
of maternal milk that is fed to VLBW infants. Providing DHA in this
way may lead to improved neurodevelopmental outcomes in in-
fancy, but longer-term benefits were not apparent. Current
research is focused both on revising the “one size fits all” strategies
for milk fortification, as well as developing new strategies to
analyze humanmilk and target fortification, thereby addressing the
wide variation in human milk composition and allowing individual
patient nutritional needs to be met more consistently.

2.5. Parenteral nutrition

Due to gastrointestinal immaturity as well as frequent clinical
instability, clinicians caring for VLBW infants typically start enteral
feedings at a low volume, then increase the volume incrementally
and add fortifiers over a period of one to two weeks. To fill the gap
between the time of birth and the establishment of full-volume
fortified enteral feedings, parenteral nutrition is a useful strategy
to administer protein, fat, and other nutrients. Similar to many
studies of enteral nutrition, randomized trials of parenteral nutri-
tion have generally focused on short term benefits, such as nitrogen
retention and weight gain. However, virtually no direct experi-
mental evidence exists regarding neurodevelopmental benefits of
providing parenteral nutrition, nor of specific strategies for deliv-
ering parenteral nutrition [54]. One of the few studies examining
longer-term outcomes compared targeting 2.5 vs 4 g/kg/day of
parenteral amino acids shortly after birth [55]. Although metabolic
endpoints were more favorable in the higher-dose group, neuro-
developmental outcomes were indistinguishable. Despite limita-
tions of the available evidence regarding neurodevelopmental
outcomes, administering parenteral nutrition e particularly amino
acids and glucose e as soon as possible after birth is a widespread
practice in neonatal intensive care, and appears to be effective in
reducing nutritional deficits and improving early weight gain.

2.6. Micronutrient supplementation

In addition to macronutrients such as protein and fat, VLBW
infants have greater requirements for several micronutrients, as
compared with full-term infants. This difference is especially
important for micronutrients that are normally transferred in large
amounts from mother to infant during the third trimester of
pregnancy, such as iron. In addition to its hematologic functions,
iron plays an important role in brain development. Of studies
investigating the effects of different iron supplementation strate-
gies for VLBW infants after birth, only a few have examined po-
tential neurodevelopmental benefits, and none has identified a
clinically or statistically significant benefit or harm [56].

3. Catching up: nutritional strategies after NICU discharge

After a period of weight gain that is slow relative to the gesta-
tional age equivalent fetus, VLBW infants often experience an ac-
celeration of growth in the early months after NICU discharge,
usually catching up to their full-term peers by preschool age [57].
This period of time provides an opportunity to compensate for
nutritional deficits that have accumulated during the NICU stay,
and is driven both by a greater intake volume of human milk or
formula in the setting of increasingly mature oral feeding abilities,
and also by clinical interventions to increase nutrient intake, for
example specialized formulas and continued human milk fortifi-
cation. More rapid weight gain after term equivalent age is asso-
ciated with better neurodevelopmental outcomes both in infancy
[16] and school age [58], but these apparent benefits may be
explained in part by reverse causation or confounding, with sicker
infants showing both slower weight gain (e.g. due to feeding dif-
ficulties) and poorer outcomes [59]. Fortunately, randomized trials
provide more definitive evidence regarding specific strategies for
post-discharge nutrition that are effective in improving neuro-
developmental outcomes (Table 1).

3.1. Fortification of formula with energy and nutrients

Strategies to provide energy and nutrient fortification after NICU
discharge include (1) continuing the in-hospital preterm formula
for a period of time after discharge, or (2) providing a “transitional”
or “post-discharge” formula, which is enriched with more energy
and nutrients than standard term formula, but less than typical in-
hospital preterm formulas. Overall, little evidence exists for bene-
ficial effects of transitional formulas as compared with standard
term formula on early growth; only one study examined 18-month
neurodevelopmental outcomes and found no effect [60].
Continuing in-hospital formula after discharge does appear to
improve weight gain and head growth, but limited data do not
support a benefit to neurodevelopment [60].

One possible explanation for the relative lack of benefit of post-
discharge nutrient fortificatione in contrast to the benefits of using
preterm formula during the NICU hospitalization e is that the in-
fant’s appetite and therefore intake is downregulated in response to
the nutrient enrichment, reducing the effectiveness of the inter-
vention. Another possibility is that the brain is more sensitive to the
effects of nutrition in the period of time before NICU discharge (e.g.
before term equivalent age) than after discharge. Despite this lack
of strong evidence for neurodevelopmental benefits, the use of
transitional formula is widespread, and may be especially appro-
priate for infants with nutritional deficits present at the time of
NICU discharge and/or limited oral intake. Although the evidence in
favor of continuing in-hospital preterm formula is stronger than for
transitional formula, in-hospital formula is generally not available
in the community setting, so is not typically used.

3.2. Human milk fortification after NICU discharge

Fortifying human milk after NICU discharge is a strategy to
provide extra nutrients required for catch-up growth, while also
allowing for continued breastfeeding according to maternal pref-
erence. The benefits of this strategy must be weighed against the
logistical difficulties of expressing and fortifying milk in the home
environment. Overall, there is some evidence that continued hu-
man milk fortification after NICU discharge is advantageous. In a
small (n¼ 39) study [61], infants <33 weeks of gestation receiving
predominantly (�80%) human milk at the time of discharge were
randomly assigned to fortify half the daily feedings versus no
fortification. At 12 weeks, infants in the fortification group were
longer and had larger head circumferences [62], and at age 1 year
the Bayley Mental Development Index was 9 points (approximately
two-thirds standard deviation) higher for infants who received
fortification. Although clinically important, this difference was not
statistically significant due to the small sample size. A larger
(n¼ 207) four-center Danish study [63] randomized infants to
fortify one feeding daily versus no fortification, finding no benefits
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to growth or neurodevelopment. The lack of benefit in this study
may be attributable to the lower intensity of the intervention
(fortification of just one versus half of all human milk feedings).
More research is needed to determine the optimal frequency and
duration of human milk fortification after NICU discharge.

4. Conclusions

The preterm brain is highly sensitive to the nutritional milieu.
Thus, strategies for nutritional care are critical to improving neu-
rodevelopmental outcomes for VLBW infants. Providing a nutrient-
enriched diet during the NICU hospitalization is effective in
improving early growth and long-term neurodevelopmental out-
comes. The period of time after NICU discharge provides an op-
portunity to compensate for deficits that accumulated during the
NICU stay, and continuing to provide a nutrient-enriched diet
during this time may be beneficial. Further work is needed to
elucidate the composition of preterm formula and human milk
fortifier that supports optimal growth and brain development.
More research is also needed to determine optimal feeding stra-
tegies after NICU discharge.
Practice points

� Providing a nutrient-enriched diet during the NICU hos-

pitalization is effective in improving early growth and

long-term neurodevelopmental outcomes.

� Feeding humanmilk rather than formula has some health

advantages, but fortification during the NICU hospitali-

zation is required to ensure that nutrient requirements

specific to the VLBW infant are met.

� The neurodevelopmental benefits of continuing a

nutrient-enriched diet after NICU discharge are less

certain, but may be of benefit, especially for human milk-

fed infants and those who have accumulated substantial

deficits during the NICU hospitalization.

Research directions

� The optimal approach to addressing the wide variation in

human milk macronutrient content and resulting poten-

tial for undernutrition in human milk-fed infants.

� Effective strategies for ensuring adequate nutrient intake

after NICU discharge for both formula-fed and breast-

feeding infants.
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