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Fatty acids are critical nutrient regulators of intracellular signaling and influence key pathways including
inflammatory responses, hemostasis as well as central nervous system development and function.
Preterm birth interrupts the maternal—fetal transfer of essential fatty acids including docosahexaenoic
and arachidonic acids, which occurs during the third trimester. Postnatal deficits of these nutrients
accrue in preterm infants during the first week and they remain throughout the first months. Due to the
regulatory roles of these fatty acids, such deficits contribute an increased risk of developing prematurity-
related morbidities including impaired growth and neurodevelopment. The fatty acid contents of
parenteral and enteral nutrition are insufficient to meet current recommendations. This chapter sum-
marizes the regulatory roles of fatty acids, current recommendations and limitations of parenteral and
enteral nutrition in meeting these recommendations in preterm infants. Suggested areas for research on

the roles of fatty acids in preterm infant health are also provided.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dietary fat intake from parenteral and enteral lipids contributes
to an appropriate balance of macronutrients; its energy density and
composition optimize protein and carbohydrate metabolism. This
high energy density constitutes a relatively higher calorie release
from oxidation of fat as compared to protein and carbohydrate. The
provision of essential and critical long chain fatty acids support
optimal growth, development, and health in preterm infants. The
quality and quantity of parenteral and enteral lipids continue to
evolve with improved understanding of the regulatory mechanisms
of the building blocks of complex lipids and their role in infant
health. Dietary lipid components, including fatty acids and their
metabolites, serve not only as energy sources but also as regulators
of developmental, immune and metabolic pathways. Improved
delivery of dietary lipids to preterm infants will contribute a critical
nutritional influence on infant health. These lipid delivery strate-
gies must coordinate optimal aspects of timing, mode of delivery as
well as quantity and quality of lipid subclasses.
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2. Placental transfer and fetal acquisition of long chain
polyunsaturated fatty acids (LC-PUFAs)

Lipolysis in maternal circulation releases non-esterified fatty
acids for transfer [1]. Lipoprotein lipases and endothelial lipases act
at the maternal placental surface to free fatty acids for transfer.
Mechanisms of fatty acid transfer across the placenta involve
simple diffusion and transport mechanisms such as fatty acid-
binding proteins and fatty acid translocases.

LC-PUFA accretion during the third trimester by the fetus co-
incides with a period of substantial growth and continued organ
development. Targeted trafficking sends these essential nutrients
to concentrate in the brain and retina as well as skeletal muscle and
adipose tissue. The fat stored in adipose tissue acts as a depot and
source for fatty acids through early infancy.

Preferential transfer occurs for essential fatty acids over non-
essential, and a distinct pattern occurs such that arachidonic acid
(AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3) are pref-
erentially transferred over linoleic acid (LA, 18:2n-6) and alpha-
linolenic acid (ALA, 18:3n-3). The concept of biomagnification re-
fers to the finding that fetal circulation contains higher levels of AA
and DHA as compared to maternal levels [1]. Multiple lipid classes
show this pattern, as measured in umbilical cord blood versus
maternal blood, including triglycerides, cholesterol esters and
phospholipids [2]. This phenomenon highlights the biological
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importance of these nutrients. Although the fetal liver shows A5-
and A6-desaturase activities, the activity level appears insufficient
to produce needed amounts of the longer chain PUFA [3], also
emphasizing the importance of placental transport.

Estimated daily fetal accrual rates during the third trimester for
AA are 212 mg/kg/day and estimated rates for DHA accretion range
between 43 and 60 mg/kg/day [4,5]. Roles for AA in fetal devel-
opment include cell growth and differentiation, and its heavy
concentrations in the central nervous system reflect its role in
neurodevelopmental processes [6]. DHA is key for central nervous
system development and function, and is most highly concentrated
in the retinal photoreceptor rod cell [7]. It helps mediate neuronal
development. Maternal DHA status and thus fetal DHA accretion
impact later cognitive function in childhood [8].

Disorders during pregnancy may impair fetal LC-PUFA accrual.
Pregnancies complicated by intrauterine growth restriction show
altered endothelial lipase expression (decreased) as well as altered
lipoprotein lipase expression (increased) [9,10]. Altered fatty acid
transport appears to be multi-factorial in pregnancies complicated
by pre-eclampsia; reasons include lower maternal stores of these
LC-PUFA, impaired placental perfusion, as well as placental
dysfunction [11]. Decreased DHA transfer has been shown in some
but not all pregnancies complicated by gestational diabetes [12,13],
which likely reflects the complex disordered metabolism involving
both insulin resistance and altered estrogen regulation [12].

3. Infant fatty acid status after preterm delivery

Interrupted gestation and incomplete adipose stores of fatty
acids make the preterm infant especially reliant on exogenous
sources of fatty acid delivery and vulnerable to rapid changes in
fatty acid levels and relative balance to one another [2]. Within the
first postnatal week, the use of Intralipid® results in a deficit of DHA
and AA, and an excess of LA, the primary fatty acid in this soybean
oil-based emulsion [14]. The deficit in DHA was associated with the
risk of chronic lung disease, whereas the reduction in AA was
associated with the risk of nosocomial sepsis. Prolonged Intralipid
use, for more than a month, contributes to a prolonged lower DHA
status lasting into the second postnatal month [15]. Of concern, this
lower DHA status remained for weeks, even after establishment of
full enteral feedings in infants with longer Intralipid exposure [16].
Cumulatively, these findings suggest that early deficits are lasting
and will not be reversed by enteral feedings alone. Although
insufficient to prevent early postnatal deficits in DHA and AA, hu-
man milk feedings compared with formula feedings mitigate DHA,
and AA declines in extremely preterm infants [ 16]. This emphasizes
the benefits of human milk feedings and the importance in sup-
porting lactation in women who deliver preterm.

4. Health consequences of suboptimal LC-PUFA status

The relevance of LC-PUFA to the health of preterm infants stems
from their regulatory effects on cell receptor signaling and gene
expression as well as their conversion to metabolites which regu-
late inflammatory processes and organogenesis. Common mor-
bidities associated with prematurity often involve elements of
uncontrolled inflammation, and laboratory and clinical evidence
suggests that alterations in LC-PUFA delivery to preterm infants will
have implications on the risk of these diseases.

4.1. Chronic lung disease
Preterm infants born prior to 30 weeks of gestation had

increased odds of chronic lung disease associated with decreasing
DHA levels during the first postnatal week [14]. Infants born

<1250 g who were fed human milk from mothers randomized to
take DHA supplements during lactation showed lower rates of
chronic lung disease compared to infants fed milk from their
mothers assigned to placebo [17]. Murine models of hyperoxia-
induced lung injury suggest that DHA and downstream products
of AA and DHA mitigate alveolar damage [18,19]. Forthcoming re-
sults from supplementation trials are expected to shed light on
respiratory outcomes in preterm infants resulting from LC-PUFA
supplementation [20].

4.2. Necrotizing enterocolitis

The clinical suggestion of a role for LC-PUFA in necrotizing
enterocolitis (NEC) prevention in preterm infants was identified in
a clinical trial of LC-PUFA supplementation using egg phospholipids
to provide AA, DHA as well as choline [21]. This intervention
significantly reduced the incidence of NEC in preterm infants fed
formula, although the study was not primarily designed to evaluate
NEC. Support for a protective mechanism has been found in animal
models evaluating LC-PUFA effects on rates of NEC and severity of
disease. AA and DHA supplementation in rats exposed to a model of
NEC induction showed a reduced incidence by 30—50% [22]. LC-
PUFA supplementation reduced gene expression of toll-like re-
ceptor 4, which activates immune inflammatory responses. In-
flammatory bowel disease may be a relevant intestinal disease with
similar pathophysiological mechanisms through which regulatory
roles of LC-PUFA and their metabolites may be understood [23,24].
Common dysregulated targets of interest include toll-like receptor
4 expression, nuclear factor B regulation, peroxisome proliferator-
activated receptor, as well as targets of eicosanoids and special-
ized pro-resolving mediators [23,24].

4.3. Retinopathy of prematurity

Impaired n-3 fatty acid status likely contributes to the aberrant
retinal vascularization observed in retinopathy of prematurity [25].
Decreased severity of retinopathy occurred in preterm infants born
<1250 g when exposed to a standard lipid emulsion supplemented
with an additional emulsion containing fish oil compared with in-
fants receiving only the standard lipid emulsion without fish oil [26].
Mechanisms of protection remain to be determined but animal
models suggest direct regulatory effects from DHA and eicosa-
pentaenoic acid (EPA, 20:5n-3) as well their metabolites (resolvins,
neuroprotectins), and n-3 fatty acid regulation of adiponectin [25,27].

4.4. Neurodevelopment

The evidence elucidating the precise role and impact of LC-PUFA
supplementation, primarily DHA and AA, on neurodevelopmental
outcomes in preterm infants has been inconsistent [28—31]. This has
remained a conundrum given the high concentrations of LC-PUFA in
the central nervous system as well as the responsiveness of the CNS
to deprivation or supplementation based on non-human primate
and human studies [32,33]. A recent and unique association bridged
evaluations of red blood cell LC-PUFA levels, brain imaging and
developmental testing in preterm infants [34]. Higher DHA levels
were associated with reduced severity of intraventricular hemor-
rhage, improved markers of brain structure on MRI and improved
language and motor scores with no effect on cognitive scores.
Questions such as the role of gender and genetic differences in fatty
acid metabolism, variability of dosing and timing of regimens, as well
as appropriateness of developmental tests administered in clinical
trials to detect the effects of these nutrients have been raised [35].

Although most investigations focus on directly increasing cen-
tral nervous system concentrations of LC-PUFA, indirect
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mechanisms of preserving development should also be considered.
Sepsis remains an independent risk factor for neurodevelopmental
impairment [36]. Low AA levels in the first week are associated
with an increased risk of sepsis [14]. As with sepsis, similar anal-
ogies can be made for NEC, another risk for neurodevelopmental
impairment [37]. Accumulating data in animal models suggest a
role of LC-PUFA in brain development as factors necessary for
reducing inflammation-related neuronal injury as well as ischemic
injury. Multiple mechanisms are implicated including pathways
regulated by brain-derived neurotropin factor (BDNF) and path-
ways altered by oxidative stress which ultimately impact regulation
of neuronal homeostasis and repair [38,39]. Common nutritional
practices which delay provision of sufficient LC-PUFA may exacer-
bate the homeostasis of these important protective mechanisms.

4.5. Targets in LC-PUFA delivery

Recommended LC-PUFA intake must account for estimated fetal
accretion, rates of endogenous production and expected bioavail-
ability which is potentially altered by the following factors:
impaired hydrolysis, malabsorption secondary to immaturity, fatty
acid oxidation especially in states of insufficient total energy de-
livery and/or increased utilization mediated by illness severity.

Current recommended nutritional practices for optimal lipid
and fatty acid delivery include:

o Initiation of intravenous lipids after birth to avoid fatty acid
deficiency, and then advancement to 3—4 g/kg/d in order to
optimize total energy delivery and carbohydrate and protein
metabolism. Currently, the benefits of providing intravenous
lipids outweigh risks of lipid-free diets.

e The preferred infant diet is mother's own milk when not con-
traindicated despite the possibility of lower DHA provisions.
Initiation of human milk feedings promptly after birth is
recommended.

e Current recommended LC-PUFA intake for preterm infants
[40,41] include:

o LA: 385—1540 mg/kg/d.

o ALA: >50 mg/kg/d.

o AA + DHA: When providing 55—60 mg/kg/day of DHA, AA
should ideally be provided at doses of 35—45 mg/kg/day,
although an accepted range for AA intake is 18—45 mg/kg/d.
There is no evidence to support the provision of DHA without
AA in preterm infants.

o EPA: <20 mg/kg/d. EPA requirements are not well defined and
are based on estimated intake for human milk-fed preterm
infants. Excessive intakes should be avoided.

DHA recommendations are estimated from fetal accretion rates,
AA intakes are estimated to support growth and prevent declines
[42], whereas EPA recommendations are extrapolated from
normative intake in human milk-fed preterm infants [42]. Current
nutritional practices should assume that deficits in DHA and AA
accumulate immediately after birth. Compared to the ideal DHA
accretion rate, a deficit of about 50% of the DHA is established by
the end of the first month [4]|. Recommended amounts for these
critical fatty acids should continue through 40 weeks of post-
menstrual age. It is not yet determined whether continuing these
amounts beyond this time period would be of benefit.

5. Unique challenges in nutritional delivery of fatty acids in
preterm infants

Nutritional provisions in the first postnatal month involve a
transition from parenteral nutrition to enteral nutrition. The

metabolic capacities of preterm infants create challenges to
providing what is considered optimal amounts of lipids and fatty
acids. The quality and quantity of fatty acids in current parenteral
formulations and enteral nutrition are not optimal for the needs of
preterm infants, whether they are in the acute phase of illness or in
a phase of recovery and growth.

5.1. Parenteral delivery of fatty acids

Nutritional practices surrounding the provisions of parenteral
lipids vary considerably [43]. Starting doses reportedly range from
0.5 g/kg/d to 3 g/kg/d. Recent findings in very low birth weight
infants show that intravenous lipid administration from birth, with
amino acids, improved early nitrogen retention without improved
growth compared with infants who did not receive lipids [44]. In
this same study, infants receiving early lipids had higher triglyc-
eride and glucose levels. The lipids used were either 100% soybean
or a combination of soy, medium chain triglycerides (MCTs), olive
and fish oils.

The postnatal declines in systemic AA and DHA levels described
earlier with the use of Intralipid are not entirely mitigated by early
provision of fish oil-containing emulsions [45]. Emulsions con-
taining fish oil in combination with other oil sources will raise DHA
and EPA levels; however, the early postnatal deficit in DHA is not
eliminated and the increase in n-3 fatty acid delivery results in a
further decline in AA, even more so than what is observed with
Intralipid [46]. Documented changes in EPA levels have been
extreme, with increases as much as 25% from baseline after infusion
of a 100% fish oil-based emulsion; the consequences of this sub-
stantial increase in the preterm infant are unknown [47]. The
concomitant changes in AA and EPA levels with increased n-3 fatty
acid delivery are important considerations given their unique
bioactive roles in human physiology. Further deprivation in AA may
impact growth, organogenesis and immune function, and an
increased risk of bleeding may occur under circumstances of either
low AA or high EPA status [48]. Monitoring for extremes in
biochemical changes are important outcome measures in addition
to correlated clinical findings as optimization of lipids and fatty
acids moves forward. It is important to note that different formu-
lations uniquely impact fatty acid bioavailability and that genetic
polymorphisms in desaturase enzymes will also contribute to a
portion of this variation from infant to infant [49].

5.2. Enteral delivery of fatty acids

5.2.1. Mechanisms of digestion and absorption

Hydrolysis of the triglyceride molecule present in enterally fed
fats is necessary to release fatty acids for absorption. Lipases are the
cleavage enzymes and multiple forms exist. These forms have
specificity to their site of action in the enteric system, have con-
ditions for optimal function and show specificity to sites of action
on lipid compounds [50]. Lingual and gastric lipases, the two that
act pre-duodenum, are active in preterm infants and perform as
much as one-third of lipid digestion when infants are orally fed. The
intestinal lumen is the site of activity for the pancreatic and bile
salt-stimulated lipases. Lipase action occurs after bile salts emulsify
fats. The emulsified droplets are hydrolyzed by the lipases,
releasing non-esterified fatty acids and monoglycerides. Small
micelles, formed from bile salts and the free fatty acid and mono-
glycerides, undergo absorption by enteric epithelial cells. Repack-
aging of the free fatty acids and monoglycerides to form
triglycerides occurs within the intestinal epithelial cell, and then
further packaging to form chylomicrons occurs. Chylomicrons are
ultimately secreted into the lymphatic system.
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Chylomicrons traverse through lymphatics to the circulatory
system where local processing can occur adjacent to specific tis-
sues. Chylomicrons become coupled to apoproteins and are hy-
drolyzed by lipases (hepatic, lipoprotein or endothelial). Free fatty
acids released by lipase activity may be incorporated into cell
membrane phospholipids at the sn-1 or sn-2 position, may enter
cells and undergo B-oxidation for energy production in mitochon-
dria and peroxisomes, or they may re-enter circulation where ul-
timately they will be stored in an esterified form in sites including
adipose, liver and muscle tissues. Carnitine facilitates fatty acyl-coA
transfer across mitochondrial membranes for B-oxidation and is
sufficient in both human milk and infant formula.

5.2.2. Impaired digestion and malabsorption in the preterm infant

The preterm infant's developmental deficiencies in enteral fat
digestion and absorption lead to a malabsorptive state. Bile salt and
pancreatic lipase deficiencies impair absorption of total fat and
specific fatty acids [51]. Losses of total fat and/or specific fatty acids
including DHA and AA may reach rates of 20—30% [52,53]. Ab-
sorption is generally worse with formula feedings. In addition to
malabsorption causing energy loss, the accumulation of undigested
fats may also cause intestinal inflammation and injury [54]. Pre-
term infants failed to demonstrate improved absorption with age
based on longitudinal monitoring of coefficients of fatty acid ab-
sorption during the first two months [53]. Safe mechanisms to
improve lipid absorption and fatty acid bioavailability in the pre-
term infant are needed.

Aggravating the problem of malabsorption are ongoing chal-
lenges in delivering appropriate amounts of LC-PUFA at the
appropriate time. Delayed provisions of enteral nutrition withhold
delivery of LC-PUFA when newer generation lipid emulsions are not
available [55]. The LC-PUFA content of human milk and preterm
infant formulas does not match estimated accrual rates by the fetus
[4,42,56]. Maternal DHA supplementation does not consistently
increase human milk DHA concentrations [57] and when breast
milk concentrations are increased delivery is delayed, unable to
mitigate the early postnatal deficits alone. The best mechanisms of
supplementation are not yet defined and likely require multiple
approaches which change as the infant feeding status changes
throughout hospitalization.

5.2.3. Human milk — mother's own and donor

Human milk fat provides 50—60% of total energy in milk. High
inter-individual variability exists; fat concentrations vary up to five-
fold between individual women [58,59] and some women show
variability in expressions from each breast [60]. A 3-fold increase in
fat concentration can be seen when sampling foremilk (milk from
the beginning of an expression) versus hind milk [60]. As growth is
influenced by energy intake, this variability raises concerns for
preterm infants as the total energy in milk, based on fat variability,
is impossible to predict in usual clinical circumstances. Routine
methods for measuring fat and total energy concentrations in any
individual's breast milk will help account for this variability in
routine clinical care.

The primary structures of milk lipids are milk fat globules with a
surrounding milk fat globule membrane containing phospholipids,
specific proteins and cholesterol [61]. The membrane contains a
core of triacylglycerols, the largest lipid component of milk [61].
The sn-2 position of glycerol is most frequently esterified with
palmitic acid (16:0) which minimizes palmitic acid cleavage from
the glycerol backbone. This protects against the formation of soaps
in the intestinal lumen which may result from free palmitic acid
binding with calcium and other minerals [62]. Bile salt-stimulated
lipase is present in milk and enhances milk fat absorption [63].
Heating processes during handling and storage of milk, including

pasteurization, will eliminate milk's lipase activity with a resulting
reduction in fat absorption [63,64].

The triacylglycerol structure of infant formulas is not similar to
that of human milk and formulas do not contain lipases. The MCT
content of infant formula compensates for structural differences
and the absence of lipase [63]. Medium chain-fatty acids constitute
less than 10% of fatty acids in human milk and up to 50% in formula.
MCTs are easily absorbed, which may be beneficial, but these
classes of lipids do not contain the critical and essential poly-
unsaturated fatty acids. Formulas contain palmitic acid primarily in
the sn-1 and sn-3 positions, a suboptimal configuration [62,65]. A
formula with structured placement of palmitic acid in the sn-2
resulted in intestinal microbial patterns that were more similar to
that of human milk [66,67].

Sufficient LA and ALA are present in human milk. A major
determinant of human milk fatty acid content is maternal dietary
intake [68]. Human milk AA is similar across populations [56]. By
contrast, different populations show marked variability in milk
DHA content. Milk from women living in coastal regions contains
the highest DHA concentrations [56]. Even within a specific
geographic area there is considerable variation in milk DHA [15].
Despite its presence in human milk, DHA deficits accrue in preterm
infants. Metabolizable DHA resulting from intake of preterm hu-
man milk may only be 14—16 mg/kg/day compared with substan-
tially higher estimated fetal accretion rates mentioned above [42].
This is attributed to the insufficient amounts present which is
compounded by frequent delays and interruptions to feedings in
preterm infants [69]. Recent evidence suggests that intake as high
as 120 mg/kg/d may be necessary to prevent declines in red blood
cell DHA [70]. With increasing use of pasteurized human donor
milk for preterm infants [71], it is noteworthy that DHA levels in
donated milk can be markedly low and reflect the geographic re-
gion of the donor mothers [72]. This situation is aggravated by the
elimination of functional bile salt-stimulated lipase by the
pasteurization process.

5.2.4. Human milk fortifiers

Standard human milk fortifiers are used routinely to increase
protein, total energy, vitamin and mineral provisions for human
milk-fed preterm infants. Formulations have recently changed,
including the addition of LC-PUFA to fortifiers. Both AA and DHA
status is increased through the use of newer fortifiers [73] yet no
clinical associations have been reported. The use of MCT oil addi-
tives in feedings is widely reported [43]. Although these supple-
ments provide easily absorbed fat which can be rapidly oxidized for
energy, there is no proven benefit to MCT oil supplements.

5.2.5. Formula

Preterm infant formulas have always contained sufficient LA and
ALA. However, they initially did not contain the longer chain fatty
acids until studies showed short-term improvements in growth
and neurodevelopment [28,74]. Amounts contained in formulas
reflect levels found in breast milk. They do not mimic estimated
fetal accretion rates or account for the absence of lipase in formulas.
Some question has been raised regarding the necessity of AA's in-
clusion in conjunction with DHA [75]. The roles of AA in vascular
and immune regulation, among other processes including growth,
allow it to be considered an essential nutrient, and current
consensus is that it should be included in preterm infant formulas
[75,76].

Recombinant human bile salt-stimulated lipase (rhBSSL) has
been tested as an intervention to improve fat absorption for
formula-fed infants and those fed pasteurized donor human milk.
In preterm infants born prior to 32 weeks of gestation who were
predominantly fed formula, rhBSSL did not improve growth [77]. Its
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use was associated with an increase in significant adverse events,
including infection and gastrointestinal complications [77]. The
need to provide functional lipase safely appears worthy of further
investigation.

6. Current knowledge gaps and areas for research

Many questions remain that need to be addressed to inform
optimal lipid and fatty acid delivery practices for the preterm in-
fant. Select questions include, but are not limited to, the following:

1. Should target doses of LC-PUFA supplementation mimic in-
utero estimates of fetal acquisition, or be even higher to
compensate for impaired absorption as well as the consider-
ation that some LC-PUFAs may be oxidized for energy use,
reducing amounts available for functional purposes? Does a
target dose, or target biochemical measure, change throughout
hospitalization for the preterm infant?

2. What consensus biochemical measure of fatty acid status should
be used across clinical investigations to allow for comparison of
associations between fatty acid status and clinical outcomes?

3. What are best mechanisms for achieving target LC-PUFA intake
and which aspects of a multi-pronged approach contribute the
most to providing metabolizable LC-PUFA?

4, What fatty acid composition in intravenous lipid emulsions is
ideal for the preterm infant?

5. What are the clinical implications of both extreme alterations of
LC-PUFA levels as well as altered ratios of lipid classes induced
by parenteral formulations?

6. What interventions during pregnancy might optimize perinatal
lipid status for the preterm infant?

7. Conclusions

Dietary lipids and fatty acids are key regulators of develop-
mental processes in preterm infants. This includes regulation of
immune responses, vascular tone, organogenesis and central ner-
vous system development. To meet the specific needs of the pre-
term infant, new parenteral and enteral formulations and methods
of delivery are needed.

Current lipid emulsions, regardless of formulation, induce ex-
tremes of fatty acid profiles in preterm infants. Their compositions
differ from estimated fetal exposures as well as amounts provided
in human milk feedings. A lipid emulsion composition with a
complex blend including n-3 fatty acids comes closer to the pre-
term infant's needs, yet more work is needed to find the correctly
balanced solution that maintains levels of fatty acids that the pre-
term infant would have been exposed to if the infant had remained
in utero. The 100% fish oil emulsions are not ideal for routine
parenteral lipid delivery in preterm infants; however, there may be
benefit as a therapeutic intervention when considering modifying
immune or inflammatory processes through nutritional in-
terventions. Such applications are being considered for parenteral
nutrition-associated liver disease and brain injury of varying eti-
ologies [78—80] with ongoing work needed to define safe dosing
that will minimize risk.

Increasing metabolizable fatty acids via enteral provisions likely
requires a multi-faceted approach. The pancreatic insufficient state
of the preterm must be compensated for especially when providing
formula and/or pasteurized human milk. In addition, the different
diets currently provided must meet the new recommended targets
and this may require modification of existing formulas as well as
routine supplementation of mothers providing breast milk. Finally,
enteral strategies must be developed in tandem with parenteral

delivery of nutrition such that the transition from parenteral to full
enteral nutrition does not result in the loss of accrual of these
critical fatty acids. Attention to improving these aspects as well as
improved understanding of the time-sensitive needs of LC-PUFA
delivery will improve long chain fatty acid status and infant
outcomes.

Future clinical trials in the neonatal intensive care unit intended
to improve long chain fatty acid status and outcomes must consider
recommended intakes in the continuum across the transition from
parenteral to enteral nutrition. Ideally, standardized collection and
analysis of clinical data and biological samples will allow for study
comparisons and aggregation of information to implement prac-
tices supported by evidence.

Practice points

e In consideration of recommended intakes of LC-PUFAs,
fortified human milk feedings are to be considered the
optimal form of nutrition for preterm infants.

e Delaying the introduction and advancement of enteral
feedings contributes to the lasting deficits in AA and DHA.

e The clinical implications of parenteral feedings using
intravenous lipid emulsions containing fish oil are
currently unknown.
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