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A B S T R A C T

Artificial intelligence (AI) has the potential to reshape surgical education by enabling personalized feedback,
advanced competency evaluations, and enhancing resident selection processes. Through AI-driven simulations
and real-time feedback systems, surgical trainees can engage in adaptive learning environments that promote
deliberate practice and accelerated skill acquisition. Moreover, intraoperative AI tools may soon offer decision
support, guiding surgeons during complex procedures. However, integrating AI into surgical education and
practice comes with significant challenges. These include the need for high-quality datasets, the transition of AI
systems from simulated environments to actual surgeries, and the ethical implications of data privacy, algorithmic
bias, and surgeon autonomy. Overreliance on AI could de-skill surgeons, while biased algorithms may perpetuate
disparities in resident selection and performance evaluations. To address these issues, regulatory frameworks
must be developed to ensure responsible AI use, focusing on transparency, validation, and augmentation rather
than replacement of human expertise. Surgeons must decide where AI's use is appropriate, questioning whether
capability alone justifies adoption. With careful consideration of these challenges, AI has the potential to revo-
lutionize surgical education and foster a new generation of highly skilled and competent surgeons.
1. Introduction

Artificial intelligence (AI) is revolutionizing the healthcare landscape,
and the realm of surgical education is no exception. In an age where
precision and expertise are paramount, AI has emerged as a trans-
formative ally with the potential to enhance how surgeons are educated
and trained. By enabling advanced feedback mechanisms and data-
driven insights, AI is paving the way for personalized and adaptive
learning environments, creating opportunities to bridge gaps in compe-
tency and performance evaluation.1,2 This technological advancement
aligns with the ongoing quest for improved surgical outcomes and patient
safety as educators seek innovative methods to better prepare surgical
trainees for the challenges of the operating room.1

Demonstrations of how AI-driven tools can affect the field of surgery
in multiple ways include intraoperative guidance (e.g., AI-based systems
could be used during laparoscopic cholecystectomy to identify critical
anatomical zones and issue warnings when dissection is carried out in a
dangerous area3,4), intraoperative context awareness (e.g., prediction of
bleeding and alert the surgical team beforehand5), and enhanced surgical
education (e.g., automated feedback).6,7 Such advancements could make
surgical interventions safer and enhance the learning experience for
surgical trainees. These systems, designed to prevent fatal errors, repre-
sent the future direction of surgery and will likely become a major
component of surgical training.

In this narrative review, we explore the current applications of AI that
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rved, including those for text and
are likely to shape the education of future surgeons. We delve into the
multifaceted role of AI in technical skills education, such as through the
enhancement of feedback in surgical simulation and intraoperative ap-
plications. We then cover the nascent but growing literature on the use of
AI, particularly large language models, in resident selection and evalu-
ation while also addressing the challenges and ethical considerations that
accompany the implementation of such powerful technologies.
2. AI-driven feedback in surgical simulation

The incorporation of AI into surgical simulators has initiated ad-
vancements in precision and functionality, but its current role in general
surgery remains more limited than in other fields, such as ophthal-
mology.8 While AI-powered simulators are being developed, most
existing simulators focus on preoperative planning and enhancing basic
skills training, particularly in laparoscopy and endoscopy. While these
techniques are mandatory components of general surgery training,9 it is
crucial to note that many existing simulators do not fully utilize AI-driven
feedback or assessment mechanisms. Virtual reality (VR) simulators,
which offer immersive environments and adaptive feedback based on
user performance, are promising vessels for AI-driven feedback but are
not yet essential components for all surgical training programs.10–12

AI has the potential to enhance surgical training through quantitative
performance assessment and tailored feedback based on individual skill
levels. Researchers at McGill University developed a machine learning
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data mining, AI training, and similar technologies.
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algorithm that classifies participants’ proficiency during virtual reality-
based simulations of hemilaminectomy and brain tumor resection.12,13

Their “Virtual Operative Assistant” (VOA) assesses skill levels and offers
real-time, expert-informed feedback tailored to individual performance
benchmarks. While this advancement could transform surgical education
in the future, current applications remain limited to specific scenarios. By
providing real-time feedback, AI allows trainees to practice indepen-
dently and learn from their mistakes without constant supervision. This
autonomy benefits trainees and experienced surgeons: trainees can hone
their skills at their own pace, while experienced surgeons can focus their
efforts on higher-level teaching during actual surgeries. In this evolving
dynamic, experienced surgeons could observe how trainees incorporate
AI feedback into their techniques, enriching the learning process and
ensuring that valuable operating room time is used efficiently for deeper
mentorship.

A recent cohort study investigated the unintended effects of AI-
enhanced competency-based curricula on surgical skill acquisition,
revealing both positive and negative outcomes. Fazlollahi et al. (2023)
developed and tested the first AI-selected competencies in surgical
simulation and categorized the affected metrics into three groups:
intrinsic, implicit, and extrinsic.6 Intrinsic metrics, directly taught by the
intelligent system, demonstrated the effectiveness of AI-driven feedback
in helping trainees focus on specific learning objectives. Implicit metrics,
such as instrument divergence, showed significant improvements even
without direct feedback due to their alignment with intrinsic learning
goals. Extrinsic metrics, such as healthy tissue removal rates and domi-
nant hand usage,13,14 were not directly related to learning objectives (in
this study, force and acceleration used to remove a brain tumor) and
showed both improvement toward and divergence from experienced
surgeon benchmarks. Study participants improved their control of in-
struments but also became slower with their dominant hand. Despite
quantitative metrics demonstrating slower movement, human evaluators
judged these participants as being more efficient in their movements on
their Objective Structured Assessment of Technical Skill rating. This
finding raises questions on the relationship between highly granular,
AI-driven performance metrics and global assessment of surgical skill.
Surgical educators will need to decide whether AI assessment in simu-
lation should prioritize granular metrics or global assessment and weigh
how individual decision-making and varying surgical contexts impact
these trade-offs across different learning environments.

AI-driven performance evaluation and feedback generation come
with limitations. A systematic review of various ML techniques revealed
significant challenges, including that simulated tasks may not accurately
reflect performance in the operating room, given the complexity of real
surgical environments and the difficulty in creating high-fidelity simu-
lation models or situations.15 Additionally, there is a lack of validity data
to evaluate performance, as most of these models are in an early stage of
development. There is a need for a substantial amount of data needed to
train and validate the algorithms.16 This highlights the need to stan-
dardize surgical data collection and cross-institutional open-source
data-sharing policies.

Given the ongoing challenges, limitations, and outstanding questions,
careful consideration and thorough cost-benefit analyses are thus
necessary when deciding whether to implement intelligent tutoring
systems, which are still in their infancy, in surgical training.

3. Intraoperative applications

AI's role in the intraoperative realm is rapidly expanding, with the
possibility of offering real-time support and feedback during surgical
procedures.17 Modern AI tools have the ability to monitor and assess
surgeons' performance in laparoscopic and endoscopic surgeries,
providing concurrent analysis to refine technical skills.18,19 These sys-
tems aim to optimize the alignment between human expert evaluations
and AI assessments, offering objective evaluations in critical areas such as
suturing and knot tying.20–22 However, as AI models are often trained on
2

a limited number of expert evaluations, biases can arise, necessitating
broader validation efforts to ensure fairness and accuracy in assessments.

AI has enabled the development of visual question-answering (VQA)
systems that allow surgical trainees to ask real-time questions during
operations. These models, which combine computer vision and language
processing, can answer broader questions, such as identifying procedural
steps or the state of instruments, including their position, angles, and
proximity to anatomical structures.23,24 As these systems advance, they
may provide more detailed, context-specific feedback, becoming valu-
able tools in environments where resident-to-faculty ratios are high.25

VQA systems offer the potential to score performance and also provide
explanations, helping trainees understand why certain actions are correct
or incorrect and how they can improve.

AI has also shown promise in enhancing intraoperative safety by
providing alerts and warnings during surgery. AI tools for laparoscopic
cholecystectomy can identify safe and unsafe zones to guide trainees.3 A
similar tool utilizes deep learning algorithms to provide guidance to
avoid parathyroid gland ischemia during endoscopic thyroid surgery.26

Additionally, AI-driven systems that monitor vital signs to predict
adverse events have been implemented to anticipate complications and
provide early warnings.27,28 Such systems may, in the future, intervene
directly during robotic surgeries, preventing potentially harmful ma-
neuvers. While these technologies reduce the burden on trainees and
mentors, the potential risks of relying too heavily on AI must be
considered. For instance, halting a robotic movement based on AI pre-
diction might interfere with necessary but seemingly risky surgical steps,
underscoring the need to balance human judgment and AI intervention.

Many of these real-time AI guidance systems use augmented reality
(AR) technology to overlay visual guidance directly onto the surgical
field. The development of AI-driven 3D reconstruction technologies,
capable of visualizing surgical procedures in real-time, adds another
layer of sophistication to intraoperative training. AI-driven segmentation
tools offer AR overlays 3D renderings of axial imaging during robotic
liver surgeries, enhancing the surgeon's understanding of anatomical
structures to assist in targeting lesions and guiding resection margins.29

This form of immediate spatial orientation allows trainees to view sur-
geries from multiple angles, enhancing their comprehension of complex
procedures. Future innovations, such as dynamic 4D reconstructions,
could offer even more detailed insights, enabling trainees to evaluate
entire surgical sequences intraoperatively and postoperatively. With
advancements in AR glasses and other devices, trainees can expect
increasingly immersive learning environments where AI seamlessly in-
tegrates into the surgical workflow, providing continuous guidance and
support.30–32

In summary, AI's contributions to intraoperative safety and compe-
tency evaluation will likely influence the future of surgical training.
These tools will not only help trainees refine their technical skills but may
also ensure safer operating environments by providing real-time guid-
ance and intervention. However, reliance on AI-driven systems raises
concerns, particularly the potential for erosion of decision-making and
de-skilling of surgeons. Striking a balance between AI assistance and
human oversight will be key to enhancing the skills essential for
achieving surgical excellence.

4. AI in resident selection

The evolution of resident selection has yielded a paradigm shift from
a heavy reliance on quantitative measures, such as Step 1 and Step 2
Clinical Knowledge (CK) scores, toward a more holistic review of appli-
cations.33 The transition to a pass/fail grading system for Step 1 has
diminished the weight of this examination in the selection process. While
Step 2 CK scores still correlate with in-training examinations and board
certification, their predictive power is limited. Studies indicate that
although lower Step 2 CK scores are associated with lower performance
on the American Board of Surgery In-Training Examination (ABSITE),
this metric alone cannot accurately forecast a resident's overall success in
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residency or clinical practice.33

In response to these limitations, governing bodies have recommended
a holistic review process for evaluating applicants in all realms of med-
icine. This approach balances academic attributes with personal experi-
ences to assess an applicant's potential as a future physician. Notably,
implementing this approach at a large academic institution led to sig-
nificant increases in the proportion of women and underrepresented
minorities in medicine (UIM) among applicants, alongside improvements
in traditional performance metrics like ABSITE scores.34 AI may
contribute to a holistic review process by employing natural language
processing (NLP) to analyze personal statements for personality traits and
potential fit within surgical teams.35 AI tools may help identify gender
bias in the selection process, as highlighted in reviews examining bias in
letters of recommendation for general surgery residency candidates.36

Using AI algorithms to screen for personality traits and team
compatibility may risk perpetuating existing biases inherent in the se-
lection process. These biases, embedded within historical data and sub-
jective evaluations, can be perpetuated by AI systems unless carefully
monitored and audited. A recent study demonstrated that AI-selected
applicants differed substantially from those chosen by a program direc-
tor (PD), with only a 7 % overlap between the two groups. While AI
expedited the review process, analyzing over 1200 applications in under
12 hours, its reliance on training data introduced biases, such as favoring
applicants from US medical schools with higher Step 2 CK scores and
more publications. Such findings underscore the risk of perpetuating
historical biases in the data used to train these algorithms, which could
inadvertently sustain homogeneity in resident cohorts.37

AI has also demonstrated the ability to generate personal statements
that mimic human-authored content. Studies show that AI-generated
statements, particularly those created by large language models like
ChatGPT (OpenAI, San Francisco, CA), were not detected as AI by re-
viewers 56 % of the time.38 AI-based personal statement review systems
may inherit biases in their training data, favoring specific demographics,
schools, or linguistic styles while penalizing others.39 Avoiding such
biases requires deliberate human oversight to align selection processes
with institutional values. Emphasizing robust auditing systems and active
human involvement is essential to mitigate these risks and foster diverse,
inclusive, and effective surgical teams.

5. AI in resident evaluation

AI aligns with several priorities set forth by the American Board of
Surgery's (ABS) Blue Ribbon Committee II on Surgical Education (BRCII),
which recently published a list of competency-based goals to advance
surgical education.40 Integrating defined training goals into daily prac-
tice workflows offers an opportunity to leverage AI in evaluating resi-
dents' performance. The BRCII highlighted the need for predictive
assessments of cognitive, technical, and behavioral competencies.
Studies have demonstrated that ML models can match or surpass expert
evaluations in determining skill based on video analysis of surgical
procedures.41,42 AI can also identify residents at risk for substandard
performance, as demonstrated by work using deep learning to analyze
behavioral andmotivational characteristics. Such information can enable
tailored learning plans and improve trainee performance.43 These ad-
vancements not only provide quantitative measures of technical skill but
also streamline feedback mechanisms for trainees. However, as is usually
the case with AI, this can only be achieved with a collective effort to
collect the necessary data, as current examples are limited to small
datasets at a small number of institutions.

There has been a recent shift in the surgical training paradigm toward
Entrustable Professional Activities (EPAs), competency-based milestones
defining the core components of surgical training. An initial set of 18 core
EPAs has been tested and implemented by the American Board of Surgery
in response to concerns about traditional certification paradigms that
prioritize case volume over demonstrated competence.44 Even though it
is very early in the EPA era, it has been shown that AI could be used
3

further to refine the competencies and identify which themes relate to
resident entrustment and, therefore, resident autonomy.45

The integration of data-driven systems, such as the AMA-NYU Pre-
cision Education Data Lab and the AMA Graduate Profile Report, dem-
onstrates the potential of big data informatics in surgical education.
Analyses from the AMA Graduate Profile Report identified discrepancies
in opioid prescribing patterns among medical school graduates, leading
to a redesign of the pharmacology curriculum at one institution.46 These
tools highlight how proximal outcome measures can validate
competency-based training and certification frameworks in real-time,
ensuring that educational objectives align with clinical and societal
needs. AI integration with such systems promises to enhance resident
assessment processes while supporting a national infrastructure for data
sharing and evidence-informed policymaking, effectively linking training
outcomes to broader public health goals.

Integrating AI into surgical education offers opportunities to enhance
trainee assessment and align program outcomes with public health
needs. However, this progress is not without significant challenges.
Achieving these goals requires addressing data privacy concerns,
ensuring equitable access to AI technologies, and fostering collaboration
across institutions to build data-sharing frameworks. While the potential
benefits are promising, AI's successful implementation will demand
sustained efforts, rigorous validation, and a commitment to addressing
the ethical, logistical, and technical hurdles that lie ahead.

6. Challenges and ethical considerations

As previously highlighted, AI's integration into surgical education can
transform the training paradigm as we know it. However, implementing
these advancements comes with significant challenges. In particular,
there is a need for large, high-quality datasets for training AI algorithms
and ensuring that AI tools can transition seamlessly from simulated en-
vironments to the complexities of actual surgeries.47 The ethical concerns
surrounding data privacy and the responsible use of personal health in-
formation must be addressed. As AI continues to evolve, regulatory
frameworks must be developed to ensure the responsible use of AI in
surgical education and practice, thus permitting a future where AI aug-
ments rather than replaces the human element in surgery.47,49

It is particularly important to balance AI assistance and human
oversight. Overreliance on AI for decision-making risks de-skilling sur-
geons and reducing their ability to manage unforeseen intraoperative
events. AI must augment rather than replace human judgment, with
surgeons maintaining ultimate control over critical decisions. AI systems
should be transparently designed with explainability in mind. The
“black-box” nature of some AI algorithms complicates transparency,
raising concerns about surgeons’ ability to understand, accept, or
disagree with AI guidance systems. Without proper oversight and
evidence-based validation, these systems could inadvertently endanger
patient safety.48 Additionally, concerns about bias in AI algorithms,
especially in resident selection and performance evaluations, require
robust validation and transparency to avoid unfair assessments.49

While AI presents numerous opportunities, its unscientific application
poses significant dangers. Unvalidated or poorly tested AI systems could
provide inaccurate recommendations, leading to harmful decisions dur-
ing surgery. Reliance on AI-generated predictions without thorough
clinical validation could result in suboptimal surgical outcomes if critical
anatomical features or steps are misidentified.50,51 By addressing these
challenges with comprehensive ethical and regulatory guidelines, AI can
transform surgical education while safeguarding human expertise and
patient safety.

7. Next steps

To effectively integrate AI into surgical education, ensuring access to
high-quality, comprehensive data is essential for driving algorithm
development and validation. Key data requirements include video and



My Thoughts / My Surgical Practice The American Journal of Surgery 246 (2025) 116257
performance analytics from a wide range of surgical procedures, as well
as detailed evaluations of resident behaviors, cognitive skills, and tech-
nical proficiency. Data from diverse demographics and educational
backgrounds will help address potential algorithmic bias.52

There is a pressing need to identify or develop metrics for surgical
performance that are educationally and clinically meaningful to guide
the development and validation of models.53 The BRCII recommended
establishing a multidisciplinary surgical education council to provide
consensus on technology implementation and prospective assessment,40

and such a council should also offer an organization-wide endorsement of
key metrics that AI developers should target to unlock AI-enabled
assessment that is meaningful.

Perhaps the most significant challenge lies not in acquiring this data
but in determining the extent to which AI should be trusted to perform
the tasks envisioned. While AI has the potential to accelerate assessment
processes, enhance feedback, and improve selection criteria, the question
remains: should AI fully assume these responsibilities (or be utilized at
all)? Concerns about transparency, accountability, and the preservation
of human judgment are significant.54

The ethical implications of allowing AI to influence decisions
regarding residency selection, performance evaluation, and patient care
require careful consideration. With personal statements and recommen-
dation letters being the few areas of an application where assessment of
non-quantitative qualities is possible, we must ask ourselves whether we
will abdicate evaluation of those qualities to algorithms and if these
sections will offer any evaluation value in the future if applicants and
letter writers rely on generative AI. Therefore, comprehensive frame-
works are necessary to guide the responsible implementation of AI,
balancing innovation with caution.55

The decision to expand AI's role in surgical education should be
driven by a careful, iterative evaluation process involving diverse
stakeholders such as educators, clinicians, engineers, and ethicists.
Transparent data collection, validation of algorithms, and ongoing
human oversight are crucial to ensuring that AI tools align with the goals
of fostering competent, equitable, and compassionate surgeons.56
8. Conclusion

AI can potentially transform the delivery of surgical education but
should not be seen as a panacea for its complexities. Instead, AI is a
complementary tool that supports human engagement, knowledge
transfer, and supervision. A key challenge lies in determining the
appropriate boundaries of AI's role. Surgeonsmust identify where AI's use
is appropriate and question whether an AI's capability alone justifies its
adoption.

A balanced, transparent approach is crucial for responsibly harness-
ing AI in surgical training to ensure fairness, accountability, and equity.
Rigorous validation, human oversight, and transparent data practices can
help mitigate algorithmic biases and uphold surgical education's core
values. All stakeholders are responsible for shaping regulations that
enhance, rather than undermine, training outcomes. The future of sur-
gical education lies not in unquestioningly embracing AI but in inte-
grating it strategically, addressing both its vast potential and risks. With
careful, ethical implementation, AI can play a pivotal role in shaping the
next generation of surgeons, fostering a training environment that is both
innovative and centered on patient care and professional integrity.
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