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Neonatal intensive care unit resuscitative care continually evolves and increasingly relies on data. Data driven
precision resuscitation care can be enabled by leveraging informatics tools and artificial intelligence. Despite
technological advancements, these data are often underutilized due to suboptimal data capture, aggregation, and
low adoption of artificial intelligence and analytic tools. This review describes the fundamentals and explores the
evidence behind informatics and artificial intelligence tools supporting neonatal intensive care unit resuscitative
care, training and education. Key findings include the need for effective interface design for accurate data
capture followed by storage and translation to wisdom using analytics and artificial intelligence tools. This re-
view addresses the issues of data privacy, bias, liability and ethical frameworks when adopting these tools. While
these emerging technologies hold great promise to improve resuscitation, further study of these applications in
neonatal population and awareness of informatics and artificial intelligence principles among clinicians is
imperative.

Introduction

Approximately 2% of patients in level 4 Neonatal Intensive Care
Units (NICU) require resuscitation during their hospitalization, an
incidence 10 times that of newborns in the delivery room.1 Informatics
tools, including artificial intelligence (AI), are uniquely positioned to
advance NICU resuscitative care through improved data management,
including data capture, retrieval, sharing, analysis, visualization, and
learning. Awareness of the current limitations and opportunities for
future innovation in this field is crucial, as they will shape the future of
neonatal care.

AI, an emerging tool, gained significant momentum in the last
decade across various industries, including healthcare, fueled by
increased computational power and expanded data storage.2 Despite the
promise and potential for AI in healthcare, utility in neonatal care,
specifically neonatal resuscitation, is currently quite limited and largely
unproven. This paper describes the fundamentals of informatics and AI
and their applications in real-time care to ethically and safely improve
neonatal resuscitation.

Informatics fundamentals

Progression from data to wisdom

The Data-Information-Knowledge-Wisdom framework describes the
progress of effective data use.3 Data are single measurements, such as
heart rate and rhythm. Combining data can reveal information, like a
heart rate trend or pulseless electrical activity, creating actionable or
important knowledge. The knowledge that hyperkalemia can cause
pulseless activity can lead to the wisdom that addressing risk factors can
prevent abnormal rhythms.

Sources and types of data

Sources of raw data include physiological monitors (e.g., heart rate,
oxygen saturations), medical devices (e.g., ventilators, syringe pumps,
and defibrillators), and health records (e.g., diagnosis codes, notes, labs,
orders, resuscitation events, and imaging). Data may be validated with
clear data types and sources or unvalidated (e.g., the numeric fraction of
inspired oxygen direct from a ventilator interface versus typed into an
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electronic health record (EHR) flowsheet with a string type). String data
might contain non-numeric characters, be expressed in percentage or
decimal form, and be unconstrained by maximum and minimum values.
Almost 80% of EHR data is unstructured (e.g., patient notes), which
complicates data use.4 Alternatively, laboratory data, regulated by the
Clinical Laboratory Improvement Amendments of 1988, contains spe-
cific elements, including test name, resulting value, acquisition time,
specimen type, and reference range.5 Some resuscitation data comprise
media files, including scanned paper code records, radiology images and
videos of resuscitations.6

Elements of effective design

The Nielsen ten usability heuristics, rules of thumb, applied to the
EHRs, resuscitation devices, and databases can facilitate data integrity
and interaction (Table 1).7 Structured evaluations with as few as 5 users
can find 85% of usability issues.8 For example, nursing surveys
improved the EHR code module at Massachusetts General Hospital.9

Artificial intelligence overview and fundamentals

AI encompasses machines and computers that think and act like
humans, performing human tasks such as speech recognition, visual
perception, language translation, and decision-making.10 Available data
and information, previously static in books and papers, is now interac-
tive, mobile, “at your fingertips” and accessible anytime.11 With
improved capabilities and the availability of advanced informatics and
AI tools, our ability to provide effective neonatal resuscitation care and
education will mature. Table 2 describes various AI methodologies in
the context of neonatal resuscitation.

Supervised machine learning

In supervised learning, models are trained using labeled data. For
example, a cardiac arrest prediction model for hospitalized infants is
trained on a comprehensive data set including important variables and a
labeled outcome of cardiac arrest (Yes/No). When applied to new data,
this model predicts infants who might develop cardiac arrest. Auto-
mated identification of lesions on X-rays/MRIs (classification) and pre-
dicting sepsis based on sepsis risk score (regression) are examples of
supervised learning.

Unsupervised machine learning (ML)

In contrast, unsupervised learning uses unlabeled data. The model
identifies data patterns and creates groups or clusters (clustering). Un-
supervised ML methods have been studied to identify patterns and
predict outcomes in resuscitation, including neurological recovery in
out-of-hospital adult cardiac arrest.12 In neonatal resuscitation,

identifying infant phenotypes from an unlabeled dataset using variables
like hemodynamic data and clinical diagnoses could help predict future
events and allocate resources effectively.

Deep learning (DL)

DL uses neural networks to model the human brain functions to
process and analyze large complex data sets, identify important vari-
ables, and create patterns for decision-making. DL can analyze vast
amounts of complex clinical resuscitation data to identify trends and
predict outcomes. DL models can predict critical events such as in-
hospital code blue events.13 Convolutional Neural Networks, an
example of DL, are extensively studied for medical image analysis.14

Generative AI

Generative AI technology can be “prompted” using natural language
to generate content text, images, video, and audio. Recently, large lan-
guage models (LLMs) have ushered in a new era of information retrieval,
moving from a “search era” to a “query, conversational, and digital as-
sistant era.” In November 2022, OpenAI formally released a chatbot,
ChatGPT, that enables users to converse in a natural language with a
reasoning engine.15 LLM use in healthcare will range broadly from
medical education and clinical care to healthcare operations.16

Informatics and AI in NICU resuscitation

Clinical deterioration prediction

Continuous monitoring of NICU infants generates vast cardiorespi-
ratory data, including heart rate and rhythm, respiratory rate, blood
pressure, and oxygen saturation. In most healthcare systems, these data
are not continuously captured and analyzed, a missed opportunity to
better understand and appreciate a patient’s physiological condition.
Subtle changes in newborn heart rate variability, often imperceptible to
bedside clinicians, can indicate pathological conditions like early sepsis
and predict mortality and other acute morbidities.17 AI-based tools can
detect these changes, promptly alert clinicians, and enable more effec-
tive and timely assessment and intervention. The HeRO® monitoring
system was the first NICU-focused AI risk-scoring system to predict
clinical deterioration (e.g., late-onset sepsis and necrotizing enteroco-
litis) based on heart rate variability trends.18

Several AI-enabled software platforms analyze real-time, continuous
physiologic data from cardiorespiratory monitors (e.g., Etiometry®,
Sickbay®). These platforms use ML techniques to provide clinical de-
cision support (CDS). Novel models utilizing these data such as the
Hyperlactatemia Index significantly predicted elevated lactate and risk
of low cardiac output in pediatric critical care patients.19

Table 1
Nielsen’s usability heuristics applied to electronic health record resuscitation interfaces.

Heuristic Example

System status visibility The resuscitation record screen appears different than other types of data entry. It is clear when documentation is complete.
Match between the system and the real world Only available medications are listed as options.
User control and freedom The process to edit / addend data is straightforward and easily recognizable.
Consistency and standards Data definitions and terminology are standard to neonatal and pediatric resuscitation guidelines.
Error prevention Speed buttons with standard medication concentrations and doses provide visual feedback for usual doses and complete

documentation with a single touch.
Recognition rather than recall Team actions usually occurring in sequence are listed in that order.
Flexibility and efficiency of use End user customization is possible. A streamlined mobile option is available.
Aesthetic and minimalist design Screens do not require scrolling. When appropriate data is presented in tables and graphs.
Helps users recognize, diagnose, and recover
from errors

Users should be able to free text when the correct data is not easily entered to avoid timely loss of data.

Help and documentation Links are provided to resuscitation guideline flowcharts.
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Resuscitation documentation

Every resuscitation event (e.g., monitor data, team action, or patient
assessment) has three elements: event type, details, and timing. Four
types of errors occur during event documentation: omission (omitting an
event that happened), commission (falsely recorded event), specifica-
tion (correct event with wrong specific details), and timing.20 Recorded
events are simple to evaluate for commission errors. However, the
absence of an event could represent a true event absence or an omission
error. For example, electronic trauma records performed the same or
better than paper documentation except for documentation that no
fluids were given before arrival.21 Specific questions on a paper code
record cue the recorder to complete documentation, a visual prompt that
may be missing from electronic interfaces. Post-event corrections
improve accuracy, and when available, comparison to a video gold
standard with feedback helps evaluate for errors.22

Accurate capture of exact times for events is crucial for learning.
“When does a chest compression round start and stop?” Relative
ordering of adjacent events or referential time (time from another event)
is employed when actual time is uncertain. “Intubation occurred before
chest compressions.” “Two minutes of chest compressions were per-
formed.” The experienced recorder is uniquely positioned to act as a
time coach and improve team performance if time documentation is
accurate.23 Electronic interfaces built for time-stamped event recording
may not easily accommodate time-related uncertainty. As Neonatal
Resuscitation Program (NRP) and Pediatric Advanced Life Support
(PALS) differ, explicit documentation of which guideline is used is
needed.

While physiologic monitor data, if artifact-free, may be directly im-
ported, team actions and patient assessments require manual input,
leaving data gaps and inconsistencies. NRP recommends recorders only
document, but in practice, they often perform several tasks.24 Environ-
mental conditions such as loud spaces and physical distance from
resuscitative events can prevent the recorder from fully observing and
accurately recording an event. Recorder interviews can reveal how
workflow impacts documentation quality.22,25

Although most level 4 NICUs document resuscitation in real-time,
only 30% use electronic documentation.26 When implementing elec-
tronic trauma records, Nationwide Children’s used recorder feedback
and usability testing to improve the interface and develop recorder ed-
ucation and check-off.27 Mobility advantages during documentation
have led to tablet-based interfaces. Some are secondary interfaces for the
main EHR, while other software is stand-alone, resuscitation

documentation focused.23,28 Enabling several observers to use multiple
interfaces from different vantage points simultaneously could improve
data entry.

Resuscitation management

AI-based automated cardiac rhythm analysis can support real-time
decisions during resuscitation, guiding treatment based on specific
cardiac arrest rhythm patterns. A classifier algorithm trained on a 273
cardiac arrest rhythm patterns dataset differentiated shockable and non-
shockable rhythms with >90% sensitivity.29,30 Zoll Pediatric One
Step™ defibrillator pads capture chest compression data, but some NICU
patients are too small. These pads offer on-device feedback on chest
compression quality, which can enhance performance in pediatric and
neonatal resuscitations.31 Augmented reality (AR) can place this infor-
mation in the compressor’s line of vision.32 In low-resource settings,
monitoring accelerometer data from the compressor’s wrist was feasible
for one-hand compressions.33 Future wearables, such as gloves, may
enable compression data availability for smaller neonates, including
preterm infants.

Often, critically ill patients must leave the NICU and travel to the
operating room or radiology suite and not uncommonly experience
undesirable off-unit resuscitations. By combining multiple patient data
streams from smart devices, wearables, and implantable sensors with
predictive analytics, patient deterioration could be detected earlier and
provide real-time CDS and post-operative monitoring beyond the
NICU.34

Debriefing and performance evaluation

After resuscitation, accurate documentation can trigger CDS order
sets for post-resuscitative care. Additionally, pediatric CDS systems that
notify organ procurement organizations of impending brain death
increased procurement.35 Objective data can also inform team feedback
and improve subsequent performance. The CODE ACES study used Get
with the Guidelines Resusitation GWTG-R metrics, Zoll R® series
accelerometer data, bedside monitor waveforms, and specialty software
to create immediate visual feedback and facilitate post-event debriefing,
leading to improved compliance with the PALS guideline for chest
compressions in infants.31

Table 2
Artificial intelligence methodologies and applications applied to neonatal resuscitation.

AI methodology Tasks Labeled
outcomes

Examples Advantages Limitations

Supervised learning Classification
(Target variable:
categorical)

Yes Prediction of cardiac arrest (Yes/No) High accuracy with sufficient labelled
data, well understood and
interpretable models

Requires large, labeled
datasets,
Time consuming and
expensive to label data,
Prone to bias if data is
not representative

Regression
(Target variable:
continuous)

Yes Predicting duration of ventilation in
infants who had cardiac arrest

Unsupervised learning Clustering No Phenotypes of infants who had
cardiac arrest

Can discover hidden patterns
No need for labeled data
Useful for exploratory data analysis

Difficult to interpret
results
May find irrelevant or
spurious patterns

Deep learning Analyzing large amounts
of data and automatic
feature extraction

Yes Analysis of video data of neonatal
resuscitation and identifying
effective versus ineffective chest
compressions

High accuracy, especially with large
data sets
Ability to learn complex
representation

Requires large dataset
and computational
power
Lack of interpretability
(black box models)

Generative artificial
intelligence Large
language models

Text summarization
Speech to text translation
Text to video
Text to audio

Yes Resuscitation event summarization
Creation of mock scenarios
Mock code video assessments

Powerful for understanding and
generating human languageUseful for
analyzing unstructured clinical and
text data

Potential for generating
biased or incorrect
information
Difficult to interpret or
explain outputs
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Resuscitation databases

Most resuscitation data is stored locally in the EHR, data warehouses,
scanned paper code records, research databases, and separate formal
case review and debriefing datasets. Combining multiple data sources
requires clear definitions and structure to preserve integrity and inter-
pretability. The Utstein Style guide, a standard reporting framework for
in-hospital resuscitation events, facilitates consistent collection,
reporting, and benchmarking across facilities.36 Only 9% of United
States level 4 children’s hospital NICUs contribute to registries with
detailed NICU resuscitation data such as the Utstein Style based Amer-
ican Heart Association’s GWTG-R database, therefore, analysis of NICU
resuscitation metrics quality and documentation completeness is not
possible.26,37 Barriers include membership costs and validated data
abstraction, legal implications of shared data, and the need to contribute
data for all cases. EHR-integrated registries would simplify
participation.38

Resuscitation education and simulation

Virtual reality (VR), augmented reality (AR) and gamification

Neonatal resuscitation education enhances technical proficiency and
teamwork among healthcare providers. Traditionally practiced with
real-world elements like manikins, it has evolved with computer tech-
nology to include virtual and blended scenarios. Fig. 1 shows the reality-
virtual continuum in neonatal resuscitation scenarios, illustrating a shift
towards immersive technology in resuscitation training.39

NRP requires continual practice through simulation to prevent rapid
loss of resuscitation skills.40 An alternative to labor-intensive mock
codes to improve neonatal resuscitation skills is serious games (e.g.,
board and computer games), including RETAIN (REsuscitationTrAINing
for health professionals), the Neonatology Game, and DIANA (digital
game-based learning).41,42 While gamification holds promise, VR games
could cause higher participant anxiety compared to high-fidelity simu-
lation with a manikin.43 Currently, neonatal resuscitation manikins, like
NeoNatalie™, offer personalized learning experiences through AI anal-
ysis.44 They provide real-time feedback on bag-mask ventilation. With

autonomous operation, learners practice independently and obtain
feedback on specific areas for improvement. Further VR advances with
lifelike scenarios will boost engagement, knowledge retention, and skill
acquisition. Remote coaching through simulated neonatal resuscitation
significantly improves care.45 Telesimulation provides access to high
quality resuscitation training to even remote areas in low-resource set-
tings and tracks learners’ progress over time.

AI in resuscitation education

Combining AR, VR, and generative AI can enhance “on demand,”
individualized education. Simulations for team training on crew
resource management and communication will become more robust.46

Early examples of VR and AI in staff training for sepsis care using AI
medical team members can be applied to resuscitation training.47 Ele-
ments, including verbal and non-verbal communication skills, could be
advanced by combining AR and generative AI to provide cues in a
trainees’ visual field during exercises.

AI could improve neonatal resuscitation and education by providing
multilingual educational resources, facilitating simulation-based
training, and supporting clinical decision-making. LLMs can be inte-
grated into training programs to offer personalized learning experiences
and enhance clinical skills.48 LLM use in medical education has many
advantages for trainees amidst demanding training schedule challenges,
which include information overload, significant time constraints, and a
lack of medical educator time and abilities.49 Hypothesis-driven
research is required to determine the most effective and favorable
learning approaches for individuals and teams using AI, VR, and AR.50

Promoting health equity in low resource settings

Technology could transform neonatal resuscitation in low-resource
healthcare settings. For example, VR simulations and e-learning
proved equally effective in maintaining neonatal resuscitation skills
among healthcare providers in Kenya and Nigeria.51 Similarly, smart-
phone applications can create real-time decision support systems. Neo-
Tap, a smartphone application, accurately records newborn heart rates
from a finger tap, replacing the need for an electronic monitor.52

Fig. 1. Milgram and Kishino’s reality-virtuality continuum with neonatal resuscitation examples.39
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AI-based object detection in video clips of neonatal and infant resusci-
tation could provide insights into the effectiveness of various resusci-
tation techniques based on resource availability and identify areas for
improvement.53 AI models can analyze and monitor data to provide
recommendations, such as when to start chest compressions or admin-
ister medications, particularly in areas with limited skilled clinicians for
neonatal resuscitation.

Legal and ethical concerns

Data privacy and security

Healthcare AI model development and data storage are challenged
by the sensitive nature of personal healthcare data and concern for
violating privacy laws such as the Health Insurance Portability and
Accountability Act of 1996 (HIPAA) and the European Union’s General
Data Protection Regulation (GDPR). Inappropriate access, data
breaches, and inference attacks that identify private information from
de-identified data can result in serious privacy violations. Nonetheless,
AI advances in healthcare will be made by leveraging large amounts of
existing data in EHRs. Techniques like differential privacy (adding noise
to the data queries) and federated learning (models are trained locally at
the data source, and insights are shared centrally without sharing the
raw data) can help address data security and privacy issues.54

Bias and discrimination

Significant bias exists in pediatric healthcare data.55 When biased
data is used to train AI models, incorrect output can lead to misguided or
incorrect healthcare decisions. A commercially available, routinely used
AI algorithm falsely assigned Black patients to lower risk categories for
the same level of pathology compared to White patients because the
model used healthcare expenditure as a proxy for severity.56 If AI is to
benefit all, datasets need to include diverse populations. To facilitate
this, one AI expert panel strongly recommends an opt-out approach for
the inclusion of patient data along with consent when developing AI
models.57 Further, healthcare systems should adopt ethical frameworks
when considering AI models in clinical settings to prevent bias and
promote fairness. A recently proposed ethical framework for using and
evaluating AI-based models, particularly in pediatrics, considers truth,
goodness, and wisdom as important components.58

Accountability and liability

The laws addressing AI-enabled recommendations and liability are
still evolving and in their infancy. The liability aspects of using AI in

clinical care are hotly debated. In the future, we might see a shared li-
ability responsibility between clinicians and technology companies
when using AI in healthcare. Hence, clinicians must actively evaluate,
implement, and supervise AI tools in clinical decision-making. In 2019,
the Food and Drug Administration published guidance papers to facili-
tate a safe rollout of AI-ML-enabled software and medical devices
(SaMD) in healthcare. These included a regulatory framework, an action
plan named “AI/ML SaMD Action Plan,” and, most recently, updates on
the collaboration between medical product centers.59 The regulatory
framework and action plan highlight the need for quality systems to
incorporate good ML practices, a risk-based approach to premarket
submissions, and monitoring these devices’ real-world performance.

Emerging technologies and innovations

Digital twin

When provided with real-time data, a digital twin replicates a real
scenario in a virtual world and applies ML algorithms. A digital twin
approach improves medical education by testing and training in silico
with a risk-free, simulated environment based on actual events and data.
This approach in critical care education has demonstrated favorable
usability and acceptance by trainees.60 Another novel approach with
digital twins is the creation and use of synthetic data, which allows for
realistic data and, importantly, protects privacy.61

Computer vision

Computer vision, a field within AI, extracts meaningful information
from digital images and videos. Building on the extensive use in self-
driving cars, computer vision could improve neonatal resuscitation by
enhancing resuscitation techniques, automating processes, creating
better monitoring and alert systems, and performing post-event ana-
lyses. In early studies, visual sensors detected very preterm infants’ heart
and respiratory rates without adherent sensors.62 In the future, it may be
possible to continuously monitor patient color, chest movements, and
team member actions during resuscitations. By analyzing video feeds in
real-time, computer vision could detect deviations from expected pat-
terns (like inadequate chest rise or cyanosis) and alert medical staff.63

Gaps and future opportunities

Table 3 outlines specific targets to improve informatics and AI sup-
port for neonatal resuscitation and provides actionable suggestions.

Table 3
Domains, gaps, and opportunities for informatics and AI in neonatal resuscitation.

Domain / Gap Opportunity

Valid Data Acquisition:
Lack of informatics tools to accurately capture resuscitation
data

NICU clinicians, informaticists, and researchers should collaborate with EHR vendors to validate interfaces and
standardize recorder training for accurate documentation of resuscitation events.
Real-time data should be recorded in industry-consistent structured formats with clear definitions.

Data Aggregation:
Lack of large datasets involving diverse patient population

Enabling broad participation in CPR registries for NICU patients should be a priority.

New Devices: Lack of devices capable of monitoring chest
compression quality for all neonates

Devices capable of assessing chest compression effectiveness in premature neonates and for use in low-resource
settings, are needed.

AI and Informatics Education: Lack of awareness and
integration of AI and informatics tools

AI integration in NICU resuscitation education could improve long-term skill retention.
Awareness and education about AI and informatics tools for NICU clinicians is vital.

Bias Oversight:
Bias in healthcare datasets that could cause equity and
fairness issues in AI models

When deploying AI applications in pediatric and neonatal healthcare, data bias must be evaluated rigorously along
with the use of ethical frameworks.

Equity: Lack of skilled clinicians in low-resource settings AI could significantly improve staff abilities and patient outcomes for neonatal resuscitation in low-resource
settings.

AI: Artificial Intelligence; EHR: Electronic Health Record; CPR: Cardiopulmonary Resuscitation; NICU: Neonatal Intensive Care Unit;.
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Conclusions

NICU resuscitation care is constantly evolving. It’s important to focus
on accurate data collection and aggregation through informatics tools to
support this progress. Advances in informatics and AI can help by
emphasizing best practices for correct and complete data collection and
developing prediction models for enhanced resuscitation team perfor-
mance. Additionally, explicit focus on innovation in medical devices for
data acquisition in all patients, including low-resource settings and bias
elimination, are the next steps towards equitable care. Integrating
informatics with AI’s safe and ethical adoption will be key to advancing
neonatal resuscitative care. NICU clinicians must understand these new
technologies to ensure appropriate implementation and participate in
the technology evaluation and development. Only then will the promise
of improved patient care, specifically neonatal resuscitation, be realized.
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