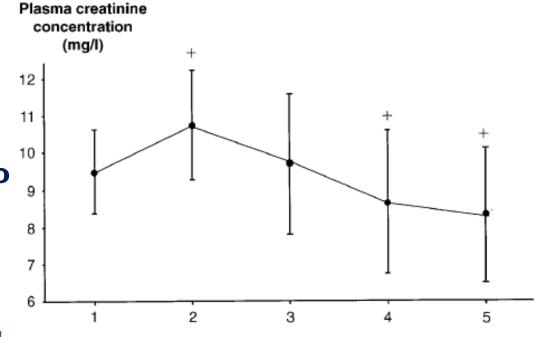


Injuria Renal Aguda y Peritoneodiálisis en recién nacidos prematuros

Dra. Carolina Lizama Delucchi Nefrología Pediátrica Hospital de Puerto Montt Universidad San Sebastián

Injuria renal aguda

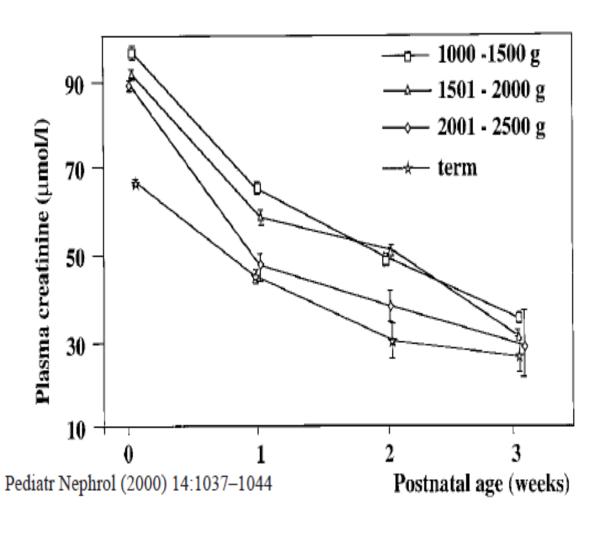

 Caída abrupta de la VFG, potencialmente reversible, con posibles cambios en el volumen y composición del fluido extracelular; con o sin compromiso del volumen urinario

Seminars in Neonatology (2003) 8, 325-334

Reducción aguda de la VFG con falla en remover solutos y/o agua, llevando a una retención de ellos. Creatinina > 1,5 mg/dl más de 24-48 hrs con fx renal materna normal.

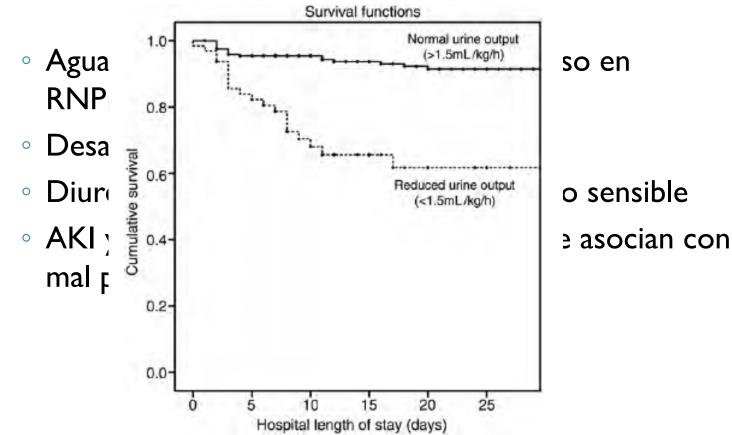
Consideraciones del RN

- Diagnóstico basado en [creatinina]pl y débito urinario
- RN Término sano
 - Creatinina inicial (materna) puede descender hasta en 48-72 hrs I semana


Days of the study

RN Prematuro

Pediatr Nephrol (2000) 14:1037-1044


Consideraciones del RN

RN Prematuro

Consideraciones del RN

Débito urinario

BioMed Research 1 Volume 2014, Artic

FIGURE 3: Cumulative patient survival between patients with normal and reduced UO.

- Riñones de neonatos son particularmente susceptibles a la hipoperfusión
 - Resistencia vascular renal elevada
 - Actividad de renina plasm elevada
 - Baja tasa de perfusión intra-cortical
 - Baja filtración glomerular
 - Baja reabsorción de Na en T Proximal

Clasificación AKI neonatal

Table 1. Synoptic view of adult, paediatric and neonatal RIFLE						
	Creatinine criteria			Urine output criteria		
	RIFLE	pRIFLE	nRIFLE	RIFLE	pRIFLE	nRIFLE
Risk	Increased creatinine × 1.5 or GFR decreases >25%	eCCl decrease by 25%	?	$UO \le 0.5 \text{ mL/} $ $kg/h \times 6 \text{ h}$	UO < 0.5 mL/ kg/h for 8 h	UO < 1.5 mL/ kg/h for 24 h
Injury	Increased creatinine × 2 or GFR decreases >50%	eCCl decrease by 50%	?	$UO \le 0.5 \text{ mL/}$ $kg/h \times 12 \text{ h}$	UO < 0.5 mL/ kg/h for 16 h	UO < 1.0 mL/ kg/h for 24 h
Failure	Increased creatinine × 3 or GFR decreases >75% or creatinine ≥4 mg/dL (acute rise of ≥4 mg/dL)	eCCl decrease by 75% or eCCl <35 mL/ min/1.73 m ²	?	$UO \le 0.3 \text{ mL/}$ $kg/h \times 24 \text{ h or}$ $anuria \times 12 \text{ h}$	UO < 0.3 mL/ kg/h for 24 h or anuric for 12 h	UO < 0.7 mL/ kg/h for 24 h or anuric for 12 h
Loss	Persistent failure >4 weeks					
End stage	Persistent failure >3 months					

AKIN		
Stage	Serum Cr	Urine output
I	↑ SCr >0.3 mg/dl or ↑ SCr >150–200% from baseline ↑ SCr to >200-300% from	<0.5 ml/kg per hour×6 h <0.5 ml/kg per
Ш	baseline ↑ SCr of >300% from baseline or SCr > 4.0 mg/dl with an acute rise of at least 0.5 mg/dl	hour > 12 h <0.3 ml/kg per hour >24 h or anuria for >12 h
	0.5 mg/dl	>12 h

KDIGO Criteria ¹³				
SCr-Based	Urine Output			
SCr increase \geq 0.3 mg/dL in 48 h OR 1.5–1.9 times	<0.5 mL/kg/h for 6–12 h			
SCr increase 2.0–2.9 times	<0.5 mL/kg/h for 12 h			
SCr ≥3.0 increase OR SCr > 4.0 mg/dL OR if <18 y of age then eCCl <35 mL/min/1.73 m²	<0.5 mL/kg/h for 24 h OR <0.3 mL/kg/h for 12 h			

Incidencia de AKI

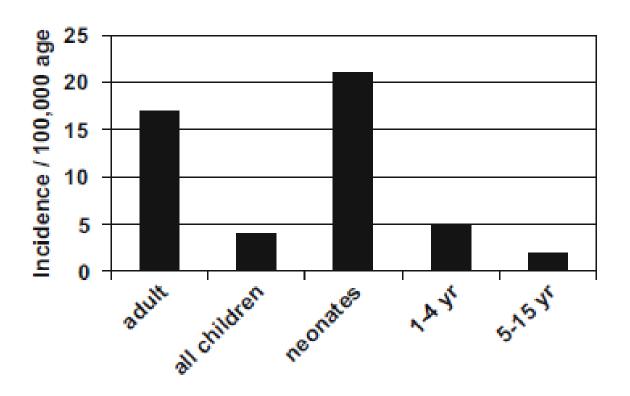


Fig. 2 Age-related comparative yearly incidence of AKI (adapted with permission from [25])

- 1311 niños, en UCI neonatal, en 3,5 años
 - 45 niños con AKI Incidencia:3,4%
 - Pretérmino: 31%
 - No oligúrica: 47%
 - Mortalidad 24,4%
 - Causas: asfixia (40%), sepsis (22,2%)
 - Diálisis: 22%

Ren Fail (2004); 26(3): 305-9

- 250 niños, UCI neonatal, en 1 año
 - Incidencia: 10,8% (27 niños)
 - Pretérmino: 59,3%
 - No oligúrica: 70,4%
 - Mortalidad: 52,9%
 - Causa: 96% pre-renal

Incidencia de AKI

- 3166 niños, UCI neonatal, en 2 años
 - Incidencia 1,54% (49 niños)
 - Pretérmino: 20,5%
 - No oligúrica: 22,4%
 - F. Asociados: sepsis 77,5%,
 - Mortalidad: 36,7%
 - Peritoneo diálisis: 36,7%

| Clin Neonatol (2014) ;3(2):99-102

- 33 niños, RNT > 36 sem, apgar < 6, prospectivo (creat > 1,5 mg/dl)
 - Asfixia severa: 61%
 - Asfixia moderada: 0%

Incidencia de AKI

- 264 RN, cohorte prospectiva, Cx cardiaca (AKIN)
 - Incidencia: 64%
 - A los 2 años: zT/E menor en AKI vs no AKI

J Pediatr (2013) 162(1): 120-7

- 96 RN asfixiados en hipotermia (AKIN), caso control
 - Incidencia: 38%
 - Mortalidad: I4% con AKI vs 3% sin AKI
 - AKI: > n° días hospitalización y vent mecánica

Table 1 Etiology of neonatal renal failure

I. Antenatal vascular damage

- Maternal treatment: nonsteroidal antiinflammatory drugs; converting enzyme inhibitors
- Twin-twin transfusion
- Co-twin death
- Neonatal renal failure associated with intrauterine growth retardation and severe oligohydramnios

II. Primary renal and urological diseases

- Congenital bilateral obstructive uropathies (posterior urethral valves)
- Polycystic kidney disease
- Renal dysplasia/hypoplasia
- Multicystic dysplasia
- Renal agenesis

III. Acquired postnatal renal diseases

- Shock
- Dehydration
- Perinatal hemorrhage (i.e., abruptio placentae)
- Necrotizing enterocolitis with a third space
- Heart failure
- Cardiopulmonary bypass; extracorporeal membrane oxygenation
- Disseminated intravascular coagulation
- Vascular thrombosis (artery, vein)
- Perinatal asphyxia
- Hemolytic uremic syndrome
- Isoimmune hemolytic diseases with massive hemoglobinuria
- Myoglobinuria, hemoglobinuria, uric acid nephropathy
- Infection: pyelonephritis, syphilis, toxoplasmosis, candidiasis
- Bilateral fungal bezoar
- Closure of congenital abdominal wall defects
- Nephrotoxic drug administration: nonsteroidal antiinflammatory drugs (indomethacin); converting enzyme inhibitors (captopril, enalapril); contrast media; amphotericin B; aminoglycosides; vancomycin [44]

Table 2. Predisposing factors for acute kidney injury in the study patients.

	Percent
Peri-natal asphyxia	18.5%
Sepsis	63%
Respiratory distress syndrome	55.6%
Dehydration	14.8%
Congenital heart disease	7.4%
Sub-galeal hematoma	3.7%
Mechanical ventilation	51.9%
Surgical operation	11.1%
Polycythemia	3.7%
Intra-ventricular hemorrhage	3.7%

Pronóstico AKI

Adultos con AKI: mayor mortalidad

- Niños con AKI
 - 126 niños con AKI (AKIN), evaluados x 3 años
 - 10,3% con ERC (albuminuria + o VFG < 60)
 - 46,8% en riesgo de ERC (ERC II, HTA,VFG > 150)

Pronóstico AKI

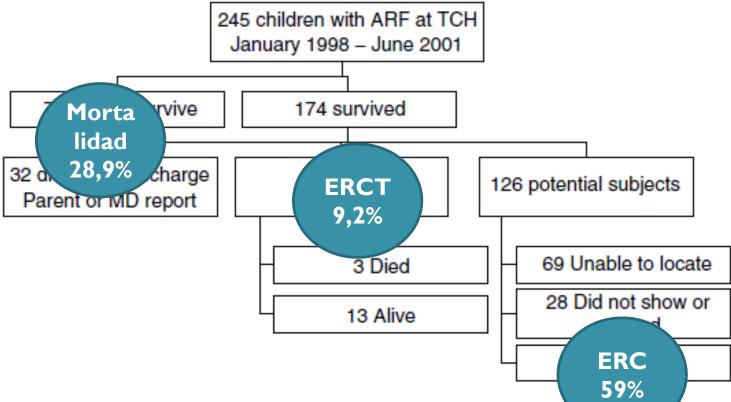
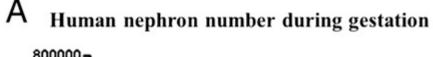
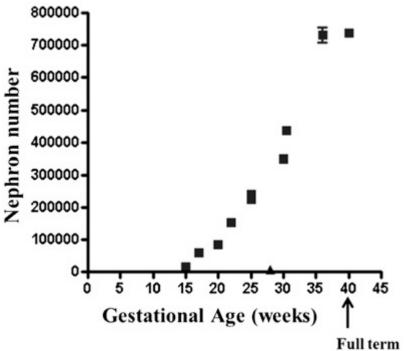
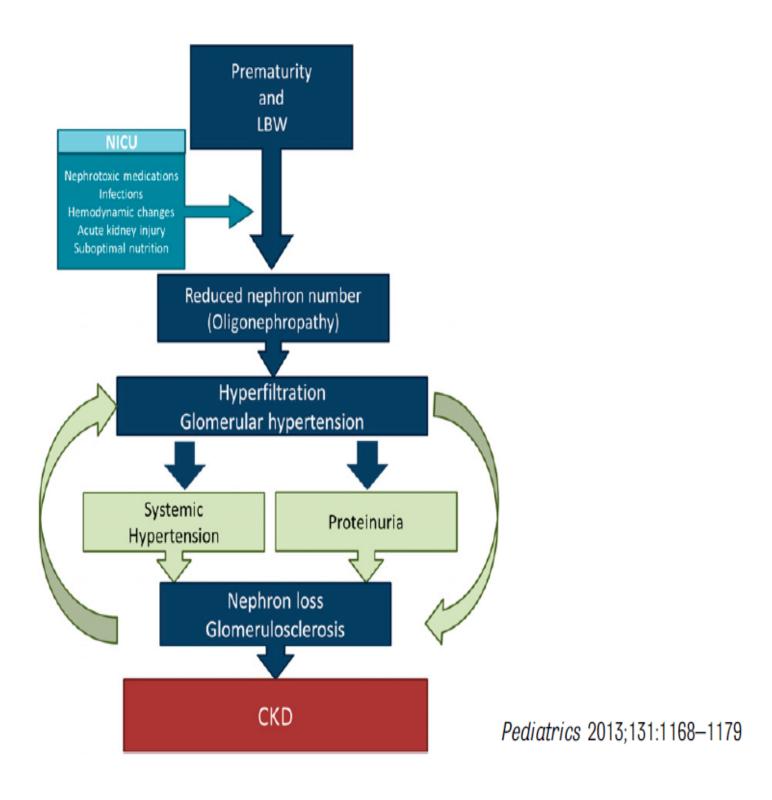




Figure 1 | 3-5-year outcomes of children who deve. RF at Texas Children's Hospital between January 1998 and June 2001. In total, 29 subjects were further evaluated for signs of chronic renal injury.

Prónostico renal de prematuros

- Nefrogénesis: 8-9 semanas 34-36 semanas (intra-útero)
- Eventual nefrogénesis hasta 40 días post natal



J Am Soc Nephrol (2011) Jul;22(7):1365-74

Pediatr Dev Pathol (2004);7(1):17-25

J Matern Fetal Neonatal Med (2010);23 Suppl 3:129-33

Manejo Conservador de AKI

- Balance de fluidos
 - Corrección de hipovolemia
 - Pérdidas insensibles
 - RNT: 60% transepidérmica / 40% respiración
 - Considerar prematuros, cunas radiantes; VM con humidificador de gases
 - Medición acuciosa de pérdidas medibles (orina, GI)

Nutrición

- Promover anabolismo
- Preferir vía enteral
- Si las necesidades energéticas no son alcanzables por limitación del volumen a aportar, implica necesidad de DIALISIS

Hiperfosfemia

- Carbonato de calcio en las mamaderas
- Hipocalcemia asociada, debería ser resuelta una vez normalizado el P, para evitar calcificaciones vasculares

	SERUM PHOSPHORUS		
Age	mg/dl	mmol/L*	
0-3 months	4.8-7.4	1.55-2.39	
I-5 years	4.5-6.5	1.45-2.10	
6-12 years	3.6-5.8	1.16-1.87	
13-20 years	2.3-4.5	0.74-1.45	

	Blood-Ionized	TOTAL	TOTAL CALCIUM	
Age	Calcium (mmol/L)	mg/dl	mmol/L [†]	
0-3 months	1.22-1.40	8.8-11.3	2.20-2.83	
I-5 years	1.22-1.32	9.4-10.8	2.35-2.70	
6-12 years	1.15-1.32	9.4-10.3	2.35-2.57	
13-20 years	1.12-1.30	8.8-10.2	2.20-2.55 Geary, Schaeffer. "Co	

Seminars in Neonatology (2003) 8, 325-334

Nephrology" (2008), Cap 27.

- Calcio ev
- Salbutamol ev o inhalado
- Insulina+glucosa
- Bicarbonato

Acidosis

- Bic de Na, para normalizar pH y Bic pl
- Corrección de I/3 ½ del déficit

TABLE 27-10 Acid-Base Balance in Healthy Infants and Children (Reference Values)				
Age	рН	pCO ₂ (mmHg) ^a	Bicarbonate (mmol/L)	
Preterm (1 week) ^b	7.22-7.46	25-37	14.8-19.6	
Preterm (6 weeks) ^b	7.34-7.42	23-47	13.1-30.7	
Term (birth) ^c	7.14-7.34	29-69	14.4-25.6	
Term (I hour) ^c	7.27-7.47	25-43	14.4-21.6	
3-6 months ^b	7.33-7.45	30-42	18.2-25.8	
21-24 months ^b	7.36-7.44	29-41	18.8-25.0	
2.1-5.4 years ^d	7.31-7.48	29-45	19.9-25.1	
5.5-12 years ^d	7.34-7.46	32-44	20.7-25.5	
>12 years ^d	7.32-7.44	35-45	22.0-26.5	

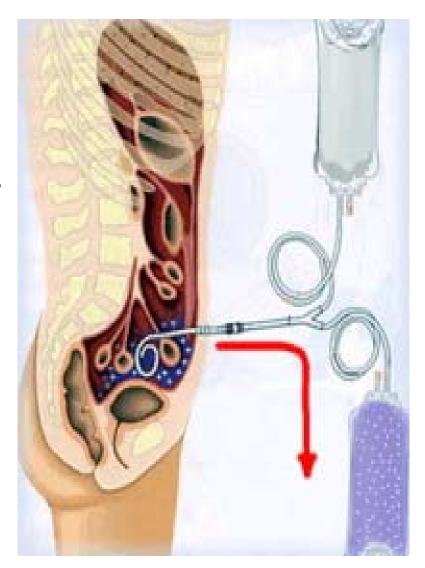
Indicaciones de Diálisis

Table 4 Common indications for dialysis in acute renal failure

- Volume overload
- Hyperkalemia
- Severe metabolic acidosis
- Hyperphosphatemia/hypocalcemia
- To make space for nutrition and drug administration
- Failure to improve with conservative management

Modalidades de Diálisis

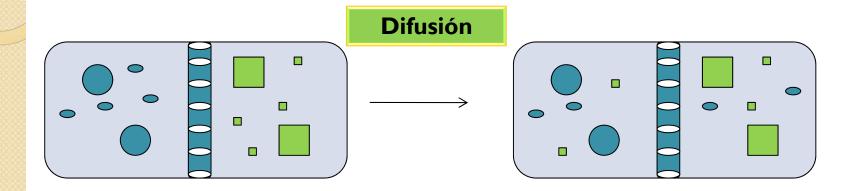
Hemodiálisis


Peritoneodiálisis

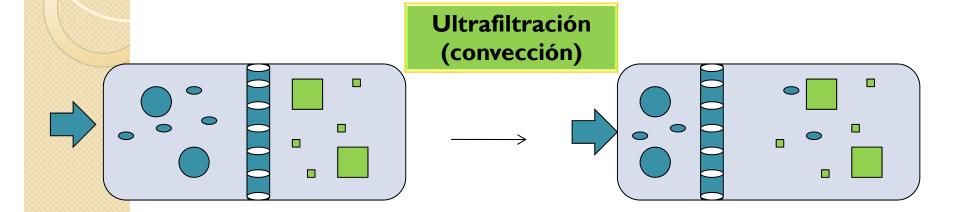
Diálisis

 Proceso por el cual la composición de solutos de una solución A es modificada al exponerla a una 2º solución B, a través de una membrana semipermeable

Diálisis Peritoneal


- Peritoneo visceral
- Peritoneo parietal
 - Funcionalmente más importante

Mecanismos de transporte de solutos en PD


- Difusión
- Ultrafiltración
- Absorción

Mecanismos de transporte de solutos

- A > PM del soluto, < tasa de transporte
 - Moléculas pequeñas se mueven a alta velocidad
 - Moléculas grandes se mueven a baja velocidad

Mecanismos de transporte de solutos

- Se produce cuando el agua es empujada por una fuerza hidrostática u osmótica a través de la membrana
 - Los solutos que entran por los poros son barridos junto con el agua ("arrastre por solvente")

MODELO DE LOS 3 POROS

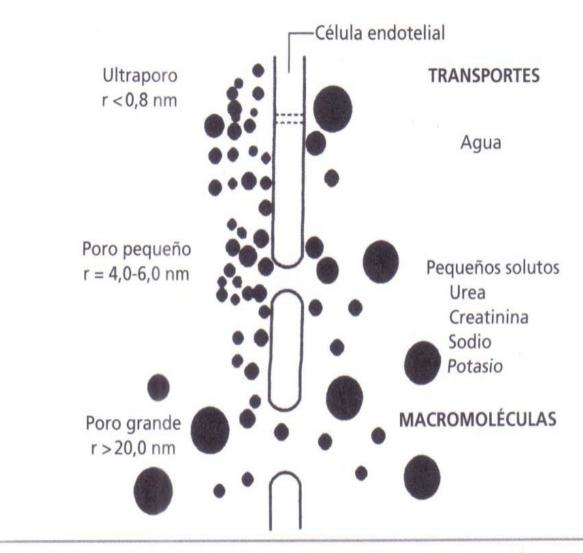


Figura 18-2. Diagrama representativo del modelo de los tres poros en el transporte peritoneal. (Adaptado de Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991;2:122).

PD

 Modalidad de elección en mayoría de neonatos

- Ventajas
 - Acceso relativamente fácil vs HD
 - Técnica de fácil implementación
 - Se puede usar con hemodinamia inestable
 - No requiere anticoagulación sistémica
 - Menor costo

- Dificultades en prematuros vs RNT
 - Area de superficie peritoneal relativamente más grande
 - Peritoneo más permeable (absorción de glucosa más rápido, lo que dificulta la UF)

- Hernia diafragmática
- Cirugía intra-abdominal reciente
- Sepsis intra-abdominal
- Tumor intra-abdominal
- NEC

PD

- Máquina "Home Choice"
 - Vol min 50 ml (límite 2,5 kg)
- Manual
- Vol infusión: 10-20 ml/kg/baño – 30 ml/kg
- Heparina 500 UI/L
- Dianeal: 1,5%, 2,5%, 4,25%
- 10-15 min infusión y drenaje (25 min) / 30-45-50 min permanencias

Clin Kidney J (2014) 7: 582–585 Seminars in Neonatology (2003) 8, 325–334

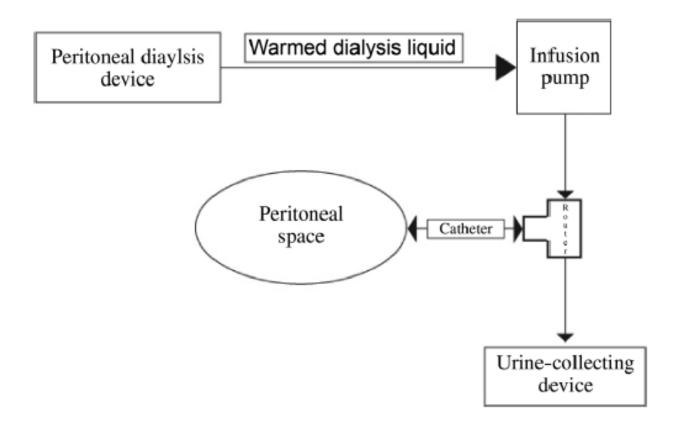
PD y catéter

- Rígidos vs flexibles
 - Rígidos tienen más complicaciones

Fig 1. Dialysis catheters: (1) trocar catheter; (2) Tenckhoff catheter; (3) modified Tenckhoff catheter.

J Ped Surg (1994);29(3):400-2 Am J Kidney Dis (2007);49(5):650-5. The Journal of Maternal-Fetal and Neonatal Medicine, 2012; 25(10): 2111–2114

PD y complicaciones


- Fugas
- Infecciones (peritonitis, orificio de salida)
- Perforación intestinal
- Obstrucción
- Hiperglicemia
- Hernias
- Hemorragias
- Fallecimiento
 - · 30-60%

- 20 RN, retrospectivo, 2007-2010
 - 7 pretérminos
 - Peso: I 100 4500 gr
 - EG 27-41 sem
 - Complicaciones (40%): peritonitis, fugas, obstrucción, hemorragia
 - Mortalidad: 50%

- 27 RN, retrospectivo, 2008-2011
 - 13 prematuros
 - EG 27-41 sem
 - Peso: 1000 3800 gr
 - Complicaciones (25,9%): peritonitis, obstrucción, fuga
 - Mortalidad: 59%

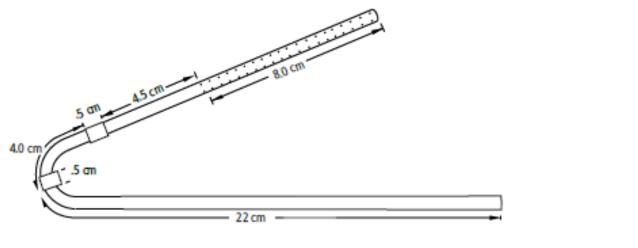
Adaptación de PD manual

Renal Failure, 2012; 34(8): 1015-1020

- RN Pret 28 sem, 840 gr
 - Catéter de PD aguda, 8 cm
 - Sin complicaciones
 - PD x 16 días
 - Creat 0,5 mg/dl a los 16 meses de vida

Resumen

 RNT y prematuros – fisiología única y propia de la edad


Grupo de riesgo de daño renal crónico

 Existe la capacidad técnica para dializar a RN de muy bajo peso Seguimiento nefrológico a todos los prematuros < 34 semanas

• Impacto a futuro de estos niños??

Protocolo Neo HPM DP en prematuros

Pediatric Tenckhoff Swan Neck Catheter

Catheter

8888410506

Pediatric Swan Neck Tenckhoff Catheter, 2 Cuffs, Left, 37.5cm