Osteopenia del Prematuro

Dr. Jaime García

Definición

- Desmineralización ósea de RNPreT que ocurre preferentemente en menores de 1500 gramos, generalmente como resultado de una baja ingesta de calcio y fósforo
- · Se desarrolla en las primeras 6 a 12 semanas de vida.
- A menor peso de nacimiento es más frecuente. Puede ocurrir hasta en un 30% de los menores de 1500 gramos y un 50% de los menores de 1000 gramos que no hayan recibido profilaxis
- · A mayor morbilidad perinatal es más frecuente la O.P.

En un estudio en 1997 en Texas, de 247 PreT menores de 1500 gramos, 39 % tenía OP a las 7 semanas, y un 10 % tenía fracturas a los 75 ddv. 26 PreT tenían 98 fracturas en total (54 costales, 13 de radio, 10 humerales, 8 cubitales, 5 femorales)

La mineralización ósea puede demorarse significativamente en PreT. En PreT equivalente a término, el contenido mineral óseo es significativamente menor a RNT, y similar a RNTPEG de peso equivalente.

Si bien el peso, la talla y P.C. de los PreT se igualan a los RNT a los dos a tres años de vida, no está bien establecido lo que ocurre con la **Densidad Mineral Ósea** (DMO). Hay estudios que difieren la normalización hasta los 8 años

En un estudio de 1997 de S. Bowden, en Liverpool, realizado a los 8 años de edad en 46 ex PreT menores de 32 semanas, se encontró que el Contenido Mineral Óseo (CMO) era inferior en los controles; los que tenían antecedentes de VM prolongada tenían menor CMO. Los PreT que se habían alimentado con fórmulas para Pret por mayor tiempo, tenían mayor CMO

Estudio en la V Región publicado el 2007, mostró que 15 ex PreT de 7,7 años de edad tenían densidad mineral ósea similar al grupo control de RNT a la misma edad. Cuando el estudio se había realizado a los 6,3 años en esos mismos niños, aún no se igualaban los valores de densidad ósea.

Mineralización

Modelamiento óseo, es un proceso mediante el cual se obtiene la geometría del hueso más ventajosa para lograr la mayor resistencia y fijación de músculos y tendones

Remodelamiento reemplazo del hueso fatigado

El modelamiento comienza a las 16 semanas de EG, junto con los movimientos fetales. Carga relacionada con el impacto fetal en el útero, carga relacionada con el desarrollo muscular y la resistencia al movimiento que produce el líquido amniótico.

- Acreción mineral: el 75 % se realiza en el tercer trimestre. A fines del 2° trimestre hay 5 gramos de calcio, al término del embarazo hay 30 gramos.
- A las 28 semanas 130 mg de calcio/día; a las 36 semanas 150-200 mg de calcio/día 60-150mg de fósforo/día.
- Los RnPreT, especialmente los menores de 1000 gramos, no pueden mantener la acreción necesaria por falta de disponibilidad en el tracto digestivo.
- La leche materna no fortificada tiene 30 mg de calcio y 15 mg de fósforo

Etiología

Multifactorial

- Bajos depósitos de Calcio y Fósforo en PreT
- -Incapacidad de mantener los niveles de depósito mineral, por baja disponibilidad o baja absorción GI
- -Déficit de Vitamina D, requiere 400 UI/día; LM sólo tiene 20 a 40 U/L. ALPAR 40 UI/ML, +/- 160 UI/K
- -IRC, fallas hepatobiliares, FNB (induce metabolismo)

Factores de riesgo

ECN

Resección GI extensa,

Alimentación parenteral prolongada restringe administración de Ca, P.

Displasia broncopulmonar

Drogas hipercalciuricas: furosemida, metilxantinas

Enfermedad crónica

Lactancia materna no fortificada

Insuficiencia renal crónica Nefropatías perdedoras de fósforo (acidosis tubular, S. de Fanconi

Corticoides

- Disminuyen el número y la actividad de los osteoblastos
- Disminuye la absorción intestinal de Calcio, lo cual aumenta la PTH, produciéndose activación de los osteoclastos

Hipótesis biomecánica

Los estrógenos placentarios hacen más sensible al hueso endosteal al estiramiento mecánico. La disminución postparto junto con el aumento del estiramiento mecánico producen una redistribución de hueso endocortical a perióstico, con una mayor estabilidad mecánica.

La hipótesis biomecánica plantea que los RNPreT tienen un menor aumento del CMO que los RNT por menor cantidad y calidad de movimiento

- En un trabajo de Laurie del año 2000, realizado en 32 PreT de 26 a 32 semanas, a 16 se les aplicó un programa de movimientos suaves de flexoextensión y compresión contra resistencia pasiva del RN, 5 a 10 minutos al día, en EESS y EEII. Se inició con alimentación enteral completa hasta los dos kilos de peso.
- El peso, la talla, el CMO, y la masa magra fueron significativamente mayores en los RN con ejercicio; marcadores bioquímicos de formación ósea se mantuvieron constantes en ese grupo, y disminuyeron en los RN que no tuvieron ejercicio.

Diagnóstico

Debe sospecharse en el grupo de riesgo, la clínica y la radiología inicial son pobres. Buscar activamente con marcadores bioquímicos

Clínica: dolor a la manipulación, hipotonía, retraso del weaning, disminución del crecimiento lineal, miopía, rosario costal, craneotabes.

Radiología: es tardía, se puede ver osteopenia cuando hay una pérdida del 20 al 40% del CMO. Huesos delgados, fracturas, engrosamiento subperiostal.

• DEXA (Dual Energy X-Ray Absorptiometry)

- Usa rayos X en dos haces, uno de alta y otro de baja energía. Permite medir el CMO corporal total axial y periférico, o localizado (columna, caderas, radio), y la composición corporal
- Más sensible y precoz en detectar cambios pequeños de CMO
- · Baja radiación, bien tolerado
- · Puede ser usado en PreT
- Disponibilidad limitada

Métodos bioquímicos

- Fosfatasas alcalinas, enzima glicoproteica, 90% de origen óseo en niños, también hepática, renal e intestinal. Reflejan actividad osteoclástica. Normalmente aumentan en todos los RN en las 2 a 3 primeras semanas, si no hay suplemento mineral siguen aumentando posteriormente.
- Hay estudios que no muestran relación entre los valores de F. Alc y el CMO.
- Sirve de screening para OP, y se pueden seriar los valores para ver evolución
- Valores mayores de 500 U/L son sugerentes de OP leve, sobre 800 U/L son de cuadros más severos

- Fosfemia. Disminuye en la OP, antes de que suban las F Alc. Valores menores de 3,5 mg % son sospechosos.
- Si bien se relaciona con la DMO, no es suficientemente sensible para identificar los déficit de CMO, pero sí muy específica. La medición junto con F Alc aumenta sensibilidad.
- Calcemia. No es de mayor utilidad, ya que se mantiene normal a expensas de la pérdida de calcio óseo
- Reabsorción tubular de fosfato sirva para medir el suplemento de fósforo, si es mayor de 95%, el suplemento es insuficiente. Cuidado con hipocalcemia, produce aumento de PTH y por ende mayor fosfaturia

- Lo más importante es prevenir en el grupo de riesgo, prematuros menores de 1500 gramos y RNPreTPEG con LME. ALPAR más de 4 semanas, diuréticos, corticoides.
- Control de F Alc, Fosfemia y Calcemia desde las dos semanas de vida y cada 15 días hasta el alta y/o 40 semanas de edad corregida. En los pacientes con OP mantener controles hasta F Alc menor de 700 U/L

- · Vitamina D 400 UI/día hasta el año de edad corregida
- Suplementos de calcio 120-200 mg/kilo/día y fósforo 80-120 mg/kilo/día. Mantenerlo hasta los tres kilos o 40 sem de E. corregida, idealmente hasta los tres meses de edad corregida
- En ALPAR Ca: P1,7/:1. 50 a 60 mg de Calcio /100 ml y 40 a 45 mg de Fósforo/100 ml de ALPAR. Vitamina D 160 UI/kilo. Con ALPAR prolongada se produce desmineralización.

- 1.- Alimentación enteral lo más precoz posible Las fórmulas para prematuros proveen hasta 90 mg/kilo/día de retención de calcio, y 40 mg/kilo/día de retención de fósforo.
- 2.- LM tiene 40 U/L de Vit D, 29 mg de Calcio y 15 mg de Fósforo/ 100 ml
- 3.- Fortificar leche materna con glicerofosfato de calcio 170 mg/kilo/día y fosfato 87 mg/kilo/día.
- 57 % de absorción y 91 % de retención de calcio = 88 mg/kilo/día
- -94 % de absorción y 61 % de retención de fósforo/día = 50 mg/kilo/día

- Desde los 15 días de vida o cuando esté tomando 100 ml/kilo/día; al 2%, subir hasta 6%
- Si F Alc son mayores de 700 U/L mantener tratamiento hasta 2 meses después de normalizarse el valor
- Si la dieta es inadecuada:
 Gluconato de Calcio 200 mg/kilo/día (2 ml al 10%)
 Fosfato bibásico de Sodio 100 mg/kilo/día (47,5 grs./lt

- · PreNan 78 mg de Calcio y 53 mg de fósforo/100 ml
- · 526 prem 80 mg de Calcio y 40 mg de fósforo/100 ml
- Similac Expert Care Neo Sure 78 mg Calcio y 39 mg de fósforo/100 ml
- Similac HMF 29 mg de Calcio y 17 mg de Fósforo/ 0,9 gramo
- Enfamil FLM 22,5 mg de Calcio y 12,5 mg de Fósforo/0,7 gramo

Evitar factores de riesgo

Revisar terapias prolongadas (diuréticos, corticoides)

Preferir diuréticos tiazídicos a furosemida y aldactona

Ejercicios pasivos de extremidades 5 a 10 minutos al día

Manipulación cuidadosa, evitar KNT torácica enérgica.

Bibliografía

- 1.- CM Harrison (catherine.harrison@leedsth.nhs.uk)1, K Johnson2, E McKechnie2 Osteopenia of prematurity: a national survey and review of practice
 - Acta Pædiatrica 2008 97, pp. 407-413
- 2.-Vilma I. Dobbs, MD
 OSTEOPENIA OF PREMATURITY
 ICN JUNE / 2004
- 3.-L. S. Bowden, C. J. Jones and S. W. Ryan
 Bone mineralisation in ex-preterm infants aged 8 year
 European Journal of Pediatrics Volume 158, Number
 8, 658-661

4.- Aída Milinarsky, Sylvia Fischer, Vinka Giadrosich, María Teresa Torres, Marina Arriagada, Roberto Arinoviche y Dunny Casanova Normalización de la densidad mineral ósea en niños nacidos prematuros en Viña del Mar, Chile

Rev Méd Chile 2007; 135: 1546-1550

5.-Dabezies EJ, Warren PD

Fractures in very low birth weight infants with rickets.

Clin Orthop Relat Res. 1997 Feb; (335):233-9.

6.-Laurie J. Moyer-Mileur, PhD, RD, CD; Vickie Brunstetter, MOTR/L; Teresa P. McNaught, RN; Gurmail Gill, BS; and Gary M. Chan, MD

Daily Physical Activity Program Increases Bone Mineralization and Growth in Preterm Very Low Birth Weight Infants

Pediatrics 2000; 106; 1088-1092

- 7.- J Faerk, B Peitersen, S Petersen, K F Michaelsen Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serumphosphate Arch Dis Child Fetal Neonatal Ed 2002;87:F133-F136
- 8.- Guías nacionales de Neonatología. Minsal 2005

Muchas gracias